Schoenfled Residua test shows proportionality hazard assumptions holds but Kaplan-Meier plots intersect The 2019 Stack Overflow Developer Survey Results Are InInterpreting the Schoenfled testViolation of Cox Proportional Hazards by a continuous variableCheck hazard proportional assuption in a large coxphWhat does the “z” in cox.zph mean in RLate Cross of Kaplan-Meier Curves - Does it matter?time varying coefficients in cox proportional hazard modelHow does time factor into Cox regression or a Cox proportional hazards model?Why are Kaplan-Meier curves crossing when Cox PH assumption is not violated (Global Shoenfeld non-significant)?Cox time-dependent coefficient continues to violate the PH assumptionViolation of proportional hazard assumption with big sample size - how to correct for it?Hazard ratio for more than two groups

Inline version of a function returns different value then non-inline version

How was Skylab's orbit inclination chosen?

Carnot-Caratheodory metric

What do hard-Brexiteers want with respect to the Irish border?

"Riffle" two strings

How come people say “Would of”?

What does "rabbited" mean/imply in this sentence?

Are there any other methods to apply to solving simultaneous equations?

Geography at the pixel level

Unbreakable Formation vs. Cry of the Carnarium

I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?

Time travel alters history but people keep saying nothing's changed

On the insanity of kings as an argument against monarchy

Is bread bad for ducks?

Looking for best latin term for a legal document

Why do UK politicians seemingly ignore opinion polls on Brexit?

Spanish for "widget"

Should I write numbers in words or as numerals when there are multiple next to each other?

How long do I have to send payment?

If the Wish spell is used to duplicate the effect of Simulacrum, are existing duplicates destroyed?

Output the Arecibo Message

Why can Shazam do this?

Why could you hear an Amstrad CPC working?

Can't find the latex code for the ⍎ (down tack jot) symbol



Schoenfled Residua test shows proportionality hazard assumptions holds but Kaplan-Meier plots intersect



The 2019 Stack Overflow Developer Survey Results Are InInterpreting the Schoenfled testViolation of Cox Proportional Hazards by a continuous variableCheck hazard proportional assuption in a large coxphWhat does the “z” in cox.zph mean in RLate Cross of Kaplan-Meier Curves - Does it matter?time varying coefficients in cox proportional hazard modelHow does time factor into Cox regression or a Cox proportional hazards model?Why are Kaplan-Meier curves crossing when Cox PH assumption is not violated (Global Shoenfeld non-significant)?Cox time-dependent coefficient continues to violate the PH assumptionViolation of proportional hazard assumption with big sample size - how to correct for it?Hazard ratio for more than two groups



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    Apr 6 at 14:46











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    Apr 6 at 16:37

















1












$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    Apr 6 at 14:46











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    Apr 6 at 16:37













1












1








1


1



$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$




"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?







cox-model kaplan-meier proportional-hazards schoenfeld-residuals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 6 at 14:09







Omar Rafique

















asked Apr 6 at 13:52









Omar RafiqueOmar Rafique

466




466







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    Apr 6 at 14:46











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    Apr 6 at 16:37












  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    Apr 6 at 14:46











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    Apr 6 at 16:37







2




2




$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46





$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46













$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37




$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37










2 Answers
2






active

oldest

votes


















3












$begingroup$

It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



    In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "65"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401515%2fschoenfled-residua-test-shows-proportionality-hazard-assumptions-holds-but-kapla%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



      You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



        You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



          You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






          share|cite|improve this answer









          $endgroup$



          It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



          You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 6 at 15:51









          EdMEdM

          22.3k23496




          22.3k23496























              3












              $begingroup$

              You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



              In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                  In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






                  share|cite|improve this answer











                  $endgroup$



                  You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                  In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Apr 6 at 16:00

























                  answered Apr 6 at 15:37









                  igoR87igoR87

                  3009




                  3009



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Cross Validated!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401515%2fschoenfled-residua-test-shows-proportionality-hazard-assumptions-holds-but-kapla%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      -cox-model, kaplan-meier, proportional-hazards, schoenfeld-residuals

                      Popular posts from this blog

                      Frič See also Navigation menuinternal link

                      Identify plant with long narrow paired leaves and reddish stems Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is this plant with long sharp leaves? Is it a weed?What is this 3ft high, stalky plant, with mid sized narrow leaves?What is this young shrub with opposite ovate, crenate leaves and reddish stems?What is this plant with large broad serrated leaves?Identify this upright branching weed with long leaves and reddish stemsPlease help me identify this bulbous plant with long, broad leaves and white flowersWhat is this small annual with narrow gray/green leaves and rust colored daisy-type flowers?What is this chilli plant?Does anyone know what type of chilli plant this is?Help identify this plant

                      fontconfig warning: “/etc/fonts/fonts.conf”, line 100: unknown “element blank” The 2019 Stack Overflow Developer Survey Results Are In“tar: unrecognized option --warning” during 'apt-get install'How to fix Fontconfig errorHow do I figure out which font file is chosen for a system generic font alias?Why are some apt-get-installed fonts being ignored by fc-list, xfontsel, etc?Reload settings in /etc/fonts/conf.dTaking 30 seconds longer to boot after upgrade from jessie to stretchHow to match multiple font names with a single <match> element?Adding a custom font to fontconfigRemoving fonts from fontconfig <match> resultsBroken fonts after upgrading Firefox ESR to latest Firefox