Proof for divisibility of polynomials. [on hold] The 2019 Stack Overflow Developer Survey Results Are InShow that $a^p^n=amod p$Divisibility problemPolynomial divisibility proofPolynomials and Divisibility Rule.Induction proof, divisibilityDivisibility of a polynomial by another polynomialDoes there exist a polynomial $f(x)$ with real coefficients such that $f(x)^2$ has fewer nonzero coefficients than $f(x)$?Polynomials - Relation of DivisibilityProof using concept of polynomials.Proof of Existence of A Rational Polynomial which has Irrational Root for an EquationTricky problem of infinite harmonic sum of polynomials
Falsification in Math vs Science
Does duplicating a spell with Wish count as casting that spell?
Pristine Bit Checking
Extreme, unacceptable situation and I can't attend work tomorrow morning
What spell level should this homebrew After-Image spell be?
Spanish for "widget"
Is there a name of the flying bionic bird?
Limit the amount of RAM Mathematica may access?
Why isn't airport relocation done gradually?
How to deal with fear of taking dependencies
Does light intensity oscillate really fast since it is a wave?
How are circuits which use complex ICs normally simulated?
Why do UK politicians seemingly ignore opinion polls on Brexit?
Where to refill my bottle in India?
Unbreakable Formation vs. Cry of the Carnarium
Inflated grade on resume at previous job, might former employer tell new employer?
How to answer pointed "are you quitting" questioning when I don't want them to suspect
Why don't Unix/Linux systems traverse through directories until they find the required version of a linked library?
Does it makes sense to buy a new cycle to learn riding?
How to make payment on the internet without leaving a money trail?
What does Linus Torvalds mean when he says that Git "never ever" tracks a file?
On the insanity of kings as an argument against monarchy
Monty Hall variation
Access elements in std::string where positon of string is greater than its size
Proof for divisibility of polynomials. [on hold]
The 2019 Stack Overflow Developer Survey Results Are InShow that $a^p^n=amod p$Divisibility problemPolynomial divisibility proofPolynomials and Divisibility Rule.Induction proof, divisibilityDivisibility of a polynomial by another polynomialDoes there exist a polynomial $f(x)$ with real coefficients such that $f(x)^2$ has fewer nonzero coefficients than $f(x)$?Polynomials - Relation of DivisibilityProof using concept of polynomials.Proof of Existence of A Rational Polynomial which has Irrational Root for an EquationTricky problem of infinite harmonic sum of polynomials
$begingroup$
I have no idea how to proceed with the following question. Please help!
"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."
polynomials divisibility
New contributor
$endgroup$
put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL 2 days ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
add a comment |
$begingroup$
I have no idea how to proceed with the following question. Please help!
"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."
polynomials divisibility
New contributor
$endgroup$
put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL 2 days ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
add a comment |
$begingroup$
I have no idea how to proceed with the following question. Please help!
"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."
polynomials divisibility
New contributor
$endgroup$
I have no idea how to proceed with the following question. Please help!
"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."
polynomials divisibility
polynomials divisibility
New contributor
New contributor
New contributor
asked 2 days ago
HeetGorakhiyaHeetGorakhiya
283
283
New contributor
New contributor
put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL 2 days ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL 2 days ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
$endgroup$
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
2 days ago
add a comment |
$begingroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
$endgroup$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
$endgroup$
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
2 days ago
add a comment |
$begingroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
$endgroup$
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
2 days ago
add a comment |
$begingroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
$endgroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
edited 2 days ago
answered 2 days ago
Maria MazurMaria Mazur
49.9k1361125
49.9k1361125
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
2 days ago
add a comment |
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
2 days ago
1
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
2 days ago
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
2 days ago
add a comment |
$begingroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
$endgroup$
add a comment |
$begingroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
$endgroup$
add a comment |
$begingroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
$endgroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
edited 2 days ago
answered 2 days ago
Bill DubuqueBill Dubuque
214k29196656
214k29196656
add a comment |
add a comment |
-divisibility, polynomials