Add an angle to a sphere The 2019 Stack Overflow Developer Survey Results Are InHow can I draw an arc from point A -> B on a 3D sphere in TikZ?How is the center point of an arc path determined?How can I draw tikz arrows on a calculated triangle?tikz: draw a piece of a path between given coordinatesPGF: draw longitudinal arcs in 3D axis environmentTikZ: Drawing an arc from an intersection to an intersectionPositioning entries in a Venn diagramA node not being typesetDraw a sphere in TikzFill a section between two circles with TikZFill angle text in TikZ
Pokemon Turn Based battle (Python)
Is a "Democratic" Oligarchy-Style System Possible?
FPGA - DIY Programming
Why isn't the circumferential light around the M87 black hole's event horizon symmetric?
How to type this arrow in math mode?
How to save as into a customized destination on macOS?
Why not take a picture of a closer black hole?
How technical should a Scrum Master be to effectively remove impediments?
What is the most effective way of iterating a std::vector and why?
Aging parents with no investments
Can a flute soloist sit?
How to deal with fear of taking dependencies
If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?
How are circuits which use complex ICs normally simulated?
Are there incongruent pythagorean triangles with the same perimeter and same area?
Why didn't the Event Horizon Telescope team mention Sagittarius A*?
If a Druid sees an animal’s corpse, can they wild shape into that animal?
Identify boardgame from Big movie
Does a dangling wire really electrocute me if I'm standing in water?
Earliest use of the term "Galois extension"?
Right tool to dig six foot holes?
A poker game description that does not feel gimmicky
What is the meaning of the verb "bear" in this context?
What does ひと匙 mean in this manga and has it been used colloquially?
Add an angle to a sphere
The 2019 Stack Overflow Developer Survey Results Are InHow can I draw an arc from point A -> B on a 3D sphere in TikZ?How is the center point of an arc path determined?How can I draw tikz arrows on a calculated triangle?tikz: draw a piece of a path between given coordinatesPGF: draw longitudinal arcs in 3D axis environmentTikZ: Drawing an arc from an intersection to an intersectionPositioning entries in a Venn diagramA node not being typesetDraw a sphere in TikzFill a section between two circles with TikZFill angle text in TikZ
I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):
% Steradian cone in sphere
% Author: Bartman
documentclass[tikz,border=10pt]standalone
%%%<
usepackageverbatim
%%%>
begincomment
:Title: Steradian cone in sphere
:Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
:Author: Bartman
:Slug: steradian-cone-sphere
A graphical representation of a steradian.
It is the solid angle subtended at the center
of a unit sphere by a unit area on its surface. (Wikipedia)
Made by Bartman on
http://golatex.de/3d-kugel-in-tikz-t17380.html
The part of the cone is from http://tex.stackexchange.com/a/186109/213
endcomment
usepackagesansmath
usetikzlibraryshadings,intersections
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
% ball background color
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
% cone
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
% ball
draw (O) circle [radius=2cm];
% label of ball center point
filldraw (O) circle (1pt) node[below] $O$;
% radius
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
draw[densely dashed] (O) -- (1.33,1.33);
% cut of ball surface
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
% label of cut of ball surface
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
endtikzpicture
enddocument
I want to add an angle alpha like this:
How can I do this?
tikz-pgf tikz-angles
New contributor
add a comment |
I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):
% Steradian cone in sphere
% Author: Bartman
documentclass[tikz,border=10pt]standalone
%%%<
usepackageverbatim
%%%>
begincomment
:Title: Steradian cone in sphere
:Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
:Author: Bartman
:Slug: steradian-cone-sphere
A graphical representation of a steradian.
It is the solid angle subtended at the center
of a unit sphere by a unit area on its surface. (Wikipedia)
Made by Bartman on
http://golatex.de/3d-kugel-in-tikz-t17380.html
The part of the cone is from http://tex.stackexchange.com/a/186109/213
endcomment
usepackagesansmath
usetikzlibraryshadings,intersections
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
% ball background color
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
% cone
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
% ball
draw (O) circle [radius=2cm];
% label of ball center point
filldraw (O) circle (1pt) node[below] $O$;
% radius
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
draw[densely dashed] (O) -- (1.33,1.33);
% cut of ball surface
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
% label of cut of ball surface
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
endtikzpicture
enddocument
I want to add an angle alpha like this:
How can I do this?
tikz-pgf tikz-angles
New contributor
add a comment |
I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):
% Steradian cone in sphere
% Author: Bartman
documentclass[tikz,border=10pt]standalone
%%%<
usepackageverbatim
%%%>
begincomment
:Title: Steradian cone in sphere
:Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
:Author: Bartman
:Slug: steradian-cone-sphere
A graphical representation of a steradian.
It is the solid angle subtended at the center
of a unit sphere by a unit area on its surface. (Wikipedia)
Made by Bartman on
http://golatex.de/3d-kugel-in-tikz-t17380.html
The part of the cone is from http://tex.stackexchange.com/a/186109/213
endcomment
usepackagesansmath
usetikzlibraryshadings,intersections
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
% ball background color
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
% cone
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
% ball
draw (O) circle [radius=2cm];
% label of ball center point
filldraw (O) circle (1pt) node[below] $O$;
% radius
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
draw[densely dashed] (O) -- (1.33,1.33);
% cut of ball surface
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
% label of cut of ball surface
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
endtikzpicture
enddocument
I want to add an angle alpha like this:
How can I do this?
tikz-pgf tikz-angles
New contributor
I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):
% Steradian cone in sphere
% Author: Bartman
documentclass[tikz,border=10pt]standalone
%%%<
usepackageverbatim
%%%>
begincomment
:Title: Steradian cone in sphere
:Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
:Author: Bartman
:Slug: steradian-cone-sphere
A graphical representation of a steradian.
It is the solid angle subtended at the center
of a unit sphere by a unit area on its surface. (Wikipedia)
Made by Bartman on
http://golatex.de/3d-kugel-in-tikz-t17380.html
The part of the cone is from http://tex.stackexchange.com/a/186109/213
endcomment
usepackagesansmath
usetikzlibraryshadings,intersections
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
% ball background color
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
% cone
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
% ball
draw (O) circle [radius=2cm];
% label of ball center point
filldraw (O) circle (1pt) node[below] $O$;
% radius
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
draw[densely dashed] (O) -- (1.33,1.33);
% cut of ball surface
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
% label of cut of ball surface
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
endtikzpicture
enddocument
I want to add an angle alpha like this:
How can I do this?
tikz-pgf tikz-angles
tikz-pgf tikz-angles
New contributor
New contributor
New contributor
asked 2 days ago
medihdemedihde
423
423
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
First, you have to name the coordinate for the edges of the angle. Here I use (x)
and (y)
.
documentclass[tikz,border=10pt]standalone
usepackagesansmath
usetikzlibraryshadings,intersections,quotes,angles
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
draw (O) circle [radius=2cm];
filldraw (O) circle (1pt) node[below] $O$;
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
% Command for the angle
pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
endtikzpicture
enddocument
add a comment |
This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.
tikz-3dplot
allows you to install orthographic projections, i.e. dial the view angles.- The
3d
library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses. - The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
tdplotsetmaincoords8000
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang50 % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
The following animation shows that you can dial view and latitude as you wish.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
foreach Angle in 5,15,...,355
tdplotsetmaincoords70+cos(Angle)00
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
Is this a cone in a sphere?
– minhthien_2016
yesterday
@minhthien_2016 It could be one.
– marmot
yesterday
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "85"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
medihde is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483789%2fadd-an-angle-to-a-sphere%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
First, you have to name the coordinate for the edges of the angle. Here I use (x)
and (y)
.
documentclass[tikz,border=10pt]standalone
usepackagesansmath
usetikzlibraryshadings,intersections,quotes,angles
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
draw (O) circle [radius=2cm];
filldraw (O) circle (1pt) node[below] $O$;
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
% Command for the angle
pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
endtikzpicture
enddocument
add a comment |
First, you have to name the coordinate for the edges of the angle. Here I use (x)
and (y)
.
documentclass[tikz,border=10pt]standalone
usepackagesansmath
usetikzlibraryshadings,intersections,quotes,angles
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
draw (O) circle [radius=2cm];
filldraw (O) circle (1pt) node[below] $O$;
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
% Command for the angle
pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
endtikzpicture
enddocument
add a comment |
First, you have to name the coordinate for the edges of the angle. Here I use (x)
and (y)
.
documentclass[tikz,border=10pt]standalone
usepackagesansmath
usetikzlibraryshadings,intersections,quotes,angles
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
draw (O) circle [radius=2cm];
filldraw (O) circle (1pt) node[below] $O$;
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
% Command for the angle
pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
endtikzpicture
enddocument
First, you have to name the coordinate for the edges of the angle. Here I use (x)
and (y)
.
documentclass[tikz,border=10pt]standalone
usepackagesansmath
usetikzlibraryshadings,intersections,quotes,angles
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin
path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];
endscope
draw (O) circle [radius=2cm];
filldraw (O) circle (1pt) node[below] $O$;
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
% Command for the angle
pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
endtikzpicture
enddocument
answered 2 days ago
JouleVJouleV
12.3k22663
12.3k22663
add a comment |
add a comment |
This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.
tikz-3dplot
allows you to install orthographic projections, i.e. dial the view angles.- The
3d
library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses. - The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
tdplotsetmaincoords8000
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang50 % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
The following animation shows that you can dial view and latitude as you wish.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
foreach Angle in 5,15,...,355
tdplotsetmaincoords70+cos(Angle)00
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
Is this a cone in a sphere?
– minhthien_2016
yesterday
@minhthien_2016 It could be one.
– marmot
yesterday
add a comment |
This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.
tikz-3dplot
allows you to install orthographic projections, i.e. dial the view angles.- The
3d
library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses. - The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
tdplotsetmaincoords8000
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang50 % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
The following animation shows that you can dial view and latitude as you wish.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
foreach Angle in 5,15,...,355
tdplotsetmaincoords70+cos(Angle)00
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
Is this a cone in a sphere?
– minhthien_2016
yesterday
@minhthien_2016 It could be one.
– marmot
yesterday
add a comment |
This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.
tikz-3dplot
allows you to install orthographic projections, i.e. dial the view angles.- The
3d
library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses. - The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
tdplotsetmaincoords8000
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang50 % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
The following animation shows that you can dial view and latitude as you wish.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
foreach Angle in 5,15,...,355
tdplotsetmaincoords70+cos(Angle)00
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.
tikz-3dplot
allows you to install orthographic projections, i.e. dial the view angles.- The
3d
library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses. - The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
tdplotsetmaincoords8000
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang50 % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
The following animation shows that you can dial view and latitude as you wish.
documentclass[tikz,border=3.14mm]standalone
usepackagetikz-3dplot
usetikzlibrary3d,backgrounds,quotes,angles
begindocument
foreach Angle in 5,15,...,355
tdplotsetmaincoords70+cos(Angle)00
begintikzpicture[tdplot_main_coords]
pgfmathsetmacroR2 % radius
pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
coordinate (O) at (0,0,0);
shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
(O) circle [radius = R*1cm];
beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
% angVis from https://tex.stackexchange.com/a/49589/121799
pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
beginscope[on background layer]
draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
endscope
draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
path (0:R*cos(myang)) coordinate (R)
(180:R*cos(myang)) coordinate (L);
endscope
beginscope[on background layer]
draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
fill (O) circle[radius=1pt] node[below] $O$;
pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
angle=R--O--L;
endscope
endtikzpicture
enddocument
answered 2 days ago
marmotmarmot
116k5150282
116k5150282
Is this a cone in a sphere?
– minhthien_2016
yesterday
@minhthien_2016 It could be one.
– marmot
yesterday
add a comment |
Is this a cone in a sphere?
– minhthien_2016
yesterday
@minhthien_2016 It could be one.
– marmot
yesterday
Is this a cone in a sphere?
– minhthien_2016
yesterday
Is this a cone in a sphere?
– minhthien_2016
yesterday
@minhthien_2016 It could be one.
– marmot
yesterday
@minhthien_2016 It could be one.
– marmot
yesterday
add a comment |
medihde is a new contributor. Be nice, and check out our Code of Conduct.
medihde is a new contributor. Be nice, and check out our Code of Conduct.
medihde is a new contributor. Be nice, and check out our Code of Conduct.
medihde is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483789%2fadd-an-angle-to-a-sphere%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
-tikz-angles, tikz-pgf