Add an angle to a sphere The 2019 Stack Overflow Developer Survey Results Are InHow can I draw an arc from point A -> B on a 3D sphere in TikZ?How is the center point of an arc path determined?How can I draw tikz arrows on a calculated triangle?tikz: draw a piece of a path between given coordinatesPGF: draw longitudinal arcs in 3D axis environmentTikZ: Drawing an arc from an intersection to an intersectionPositioning entries in a Venn diagramA node not being typesetDraw a sphere in TikzFill a section between two circles with TikZFill angle text in TikZ

Pokemon Turn Based battle (Python)

Is a "Democratic" Oligarchy-Style System Possible?

FPGA - DIY Programming

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

How to type this arrow in math mode?

How to save as into a customized destination on macOS?

Why not take a picture of a closer black hole?

How technical should a Scrum Master be to effectively remove impediments?

What is the most effective way of iterating a std::vector and why?

Aging parents with no investments

Can a flute soloist sit?

How to deal with fear of taking dependencies

If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?

How are circuits which use complex ICs normally simulated?

Are there incongruent pythagorean triangles with the same perimeter and same area?

Why didn't the Event Horizon Telescope team mention Sagittarius A*?

If a Druid sees an animal’s corpse, can they wild shape into that animal?

Identify boardgame from Big movie

Does a dangling wire really electrocute me if I'm standing in water?

Earliest use of the term "Galois extension"?

Right tool to dig six foot holes?

A poker game description that does not feel gimmicky

What is the meaning of the verb "bear" in this context?

What does ひと匙 mean in this manga and has it been used colloquially?



Add an angle to a sphere



The 2019 Stack Overflow Developer Survey Results Are InHow can I draw an arc from point A -> B on a 3D sphere in TikZ?How is the center point of an arc path determined?How can I draw tikz arrows on a calculated triangle?tikz: draw a piece of a path between given coordinatesPGF: draw longitudinal arcs in 3D axis environmentTikZ: Drawing an arc from an intersection to an intersectionPositioning entries in a Venn diagramA node not being typesetDraw a sphere in TikzFill a section between two circles with TikZFill angle text in TikZ










6















I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



 % Steradian cone in sphere
% Author: Bartman
documentclass[tikz,border=10pt]standalone
%%%<
usepackageverbatim
%%%>
begincomment
:Title: Steradian cone in sphere
:Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
:Author: Bartman
:Slug: steradian-cone-sphere

A graphical representation of a steradian.
It is the solid angle subtended at the center
of a unit sphere by a unit area on its surface. (Wikipedia)

Made by Bartman on
http://golatex.de/3d-kugel-in-tikz-t17380.html

The part of the cone is from http://tex.stackexchange.com/a/186109/213
endcomment
usepackagesansmath
usetikzlibraryshadings,intersections
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);



% ball background color
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

% cone
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin

path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];


endscope


% ball
draw (O) circle [radius=2cm];
% label of ball center point
filldraw (O) circle (1pt) node[below] $O$;

% radius
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
draw[densely dashed] (O) -- (1.33,1.33);

% cut of ball surface
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];

% label of cut of ball surface
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
endtikzpicture
enddocument


I want to add an angle alpha like this:



enter image description here



How can I do this?










share|improve this question







New contributor




medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    6















    I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



     % Steradian cone in sphere
    % Author: Bartman
    documentclass[tikz,border=10pt]standalone
    %%%<
    usepackageverbatim
    %%%>
    begincomment
    :Title: Steradian cone in sphere
    :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
    :Author: Bartman
    :Slug: steradian-cone-sphere

    A graphical representation of a steradian.
    It is the solid angle subtended at the center
    of a unit sphere by a unit area on its surface. (Wikipedia)

    Made by Bartman on
    http://golatex.de/3d-kugel-in-tikz-t17380.html

    The part of the cone is from http://tex.stackexchange.com/a/186109/213
    endcomment
    usepackagesansmath
    usetikzlibraryshadings,intersections
    begindocument
    begintikzpicture[font = sansmath]
    coordinate (O) at (0,0);



    % ball background color
    shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

    % cone
    beginscope
    defrx0.71% horizontal radius of the ellipse
    defry0.15% vertical radius of the ellipse
    defz0.725% distance from center of ellipse to origin

    path [name path = ellipse] (0,z) ellipse (rx and ry);
    path [name path = horizontal] (-rx,z-ry*ry/z)
    -- (rx,z-ry*ry/z);
    path [name intersections = of = ellipse and horizontal];


    endscope


    % ball
    draw (O) circle [radius=2cm];
    % label of ball center point
    filldraw (O) circle (1pt) node[below] $O$;

    % radius
    draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
    draw[densely dashed] (O) -- (1.33,1.33);

    % cut of ball surface
    draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
    x radius = 13.8mm, y radius = 3.6mm];
    draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
    x radius = 13.75mm, y radius = 3.15mm];

    % label of cut of ball surface
    draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
    endtikzpicture
    enddocument


    I want to add an angle alpha like this:



    enter image description here



    How can I do this?










    share|improve this question







    New contributor




    medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      6












      6








      6


      1






      I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



       % Steradian cone in sphere
      % Author: Bartman
      documentclass[tikz,border=10pt]standalone
      %%%<
      usepackageverbatim
      %%%>
      begincomment
      :Title: Steradian cone in sphere
      :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
      :Author: Bartman
      :Slug: steradian-cone-sphere

      A graphical representation of a steradian.
      It is the solid angle subtended at the center
      of a unit sphere by a unit area on its surface. (Wikipedia)

      Made by Bartman on
      http://golatex.de/3d-kugel-in-tikz-t17380.html

      The part of the cone is from http://tex.stackexchange.com/a/186109/213
      endcomment
      usepackagesansmath
      usetikzlibraryshadings,intersections
      begindocument
      begintikzpicture[font = sansmath]
      coordinate (O) at (0,0);



      % ball background color
      shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

      % cone
      beginscope
      defrx0.71% horizontal radius of the ellipse
      defry0.15% vertical radius of the ellipse
      defz0.725% distance from center of ellipse to origin

      path [name path = ellipse] (0,z) ellipse (rx and ry);
      path [name path = horizontal] (-rx,z-ry*ry/z)
      -- (rx,z-ry*ry/z);
      path [name intersections = of = ellipse and horizontal];


      endscope


      % ball
      draw (O) circle [radius=2cm];
      % label of ball center point
      filldraw (O) circle (1pt) node[below] $O$;

      % radius
      draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
      draw[densely dashed] (O) -- (1.33,1.33);

      % cut of ball surface
      draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
      x radius = 13.8mm, y radius = 3.6mm];
      draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
      x radius = 13.75mm, y radius = 3.15mm];

      % label of cut of ball surface
      draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
      endtikzpicture
      enddocument


      I want to add an angle alpha like this:



      enter image description here



      How can I do this?










      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



       % Steradian cone in sphere
      % Author: Bartman
      documentclass[tikz,border=10pt]standalone
      %%%<
      usepackageverbatim
      %%%>
      begincomment
      :Title: Steradian cone in sphere
      :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
      :Author: Bartman
      :Slug: steradian-cone-sphere

      A graphical representation of a steradian.
      It is the solid angle subtended at the center
      of a unit sphere by a unit area on its surface. (Wikipedia)

      Made by Bartman on
      http://golatex.de/3d-kugel-in-tikz-t17380.html

      The part of the cone is from http://tex.stackexchange.com/a/186109/213
      endcomment
      usepackagesansmath
      usetikzlibraryshadings,intersections
      begindocument
      begintikzpicture[font = sansmath]
      coordinate (O) at (0,0);



      % ball background color
      shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

      % cone
      beginscope
      defrx0.71% horizontal radius of the ellipse
      defry0.15% vertical radius of the ellipse
      defz0.725% distance from center of ellipse to origin

      path [name path = ellipse] (0,z) ellipse (rx and ry);
      path [name path = horizontal] (-rx,z-ry*ry/z)
      -- (rx,z-ry*ry/z);
      path [name intersections = of = ellipse and horizontal];


      endscope


      % ball
      draw (O) circle [radius=2cm];
      % label of ball center point
      filldraw (O) circle (1pt) node[below] $O$;

      % radius
      draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
      draw[densely dashed] (O) -- (1.33,1.33);

      % cut of ball surface
      draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
      x radius = 13.8mm, y radius = 3.6mm];
      draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
      x radius = 13.75mm, y radius = 3.15mm];

      % label of cut of ball surface
      draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
      endtikzpicture
      enddocument


      I want to add an angle alpha like this:



      enter image description here



      How can I do this?







      tikz-pgf tikz-angles






      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 days ago









      medihdemedihde

      423




      423




      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes


















          5














          First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



          documentclass[tikz,border=10pt]standalone
          usepackagesansmath
          usetikzlibraryshadings,intersections,quotes,angles
          begindocument
          begintikzpicture[font = sansmath]
          coordinate (O) at (0,0);
          shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
          beginscope
          defrx0.71% horizontal radius of the ellipse
          defry0.15% vertical radius of the ellipse
          defz0.725% distance from center of ellipse to origin
          path [name path = ellipse] (0,z) ellipse (rx and ry);
          path [name path = horizontal] (-rx,z-ry*ry/z)
          -- (rx,z-ry*ry/z);
          path [name intersections = of = ellipse and horizontal];
          endscope
          draw (O) circle [radius=2cm];
          filldraw (O) circle (1pt) node[below] $O$;
          draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
          draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
          draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
          x radius = 13.8mm, y radius = 3.6mm];
          draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
          x radius = 13.75mm, y radius = 3.15mm];
          draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

          % Command for the angle
          pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
          endtikzpicture
          enddocument


          enter image description here






          share|improve this answer






























            5














            This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




            1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

            2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

            3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



            documentclass[tikz,border=3.14mm]standalone
            usepackagetikz-3dplot
            usetikzlibrary3d,backgrounds,quotes,angles
            begindocument
            tdplotsetmaincoords8000
            begintikzpicture[tdplot_main_coords]
            pgfmathsetmacroR2 % radius
            pgfmathsetmacromyang50 % latitude angle of the red circle
            coordinate (O) at (0,0,0);
            shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
            (O) circle [radius = R*1cm];
            beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
            % angVis from https://tex.stackexchange.com/a/49589/121799
            pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
            beginscope[on background layer]
            draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
            endscope
            draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
            path (0:R*cos(myang)) coordinate (R)
            (180:R*cos(myang)) coordinate (L);
            endscope
            beginscope[on background layer]
            draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
            fill (O) circle[radius=1pt] node[below] $O$;
            pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
            angle=R--O--L;
            endscope
            endtikzpicture
            enddocument


            enter image description here



            The following animation shows that you can dial view and latitude as you wish.



            documentclass[tikz,border=3.14mm]standalone
            usepackagetikz-3dplot
            usetikzlibrary3d,backgrounds,quotes,angles
            begindocument
            foreach Angle in 5,15,...,355
            tdplotsetmaincoords70+cos(Angle)00
            begintikzpicture[tdplot_main_coords]
            pgfmathsetmacroR2 % radius
            pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
            coordinate (O) at (0,0,0);
            shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
            (O) circle [radius = R*1cm];
            beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
            % angVis from https://tex.stackexchange.com/a/49589/121799
            pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
            beginscope[on background layer]
            draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
            endscope
            draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
            path (0:R*cos(myang)) coordinate (R)
            (180:R*cos(myang)) coordinate (L);
            endscope
            beginscope[on background layer]
            draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
            fill (O) circle[radius=1pt] node[below] $O$;
            pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
            angle=R--O--L;
            endscope
            endtikzpicture
            enddocument


            enter image description here






            share|improve this answer























            • Is this a cone in a sphere?

              – minhthien_2016
              yesterday












            • @minhthien_2016 It could be one.

              – marmot
              yesterday











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "85"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            medihde is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483789%2fadd-an-angle-to-a-sphere%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5














            First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



            documentclass[tikz,border=10pt]standalone
            usepackagesansmath
            usetikzlibraryshadings,intersections,quotes,angles
            begindocument
            begintikzpicture[font = sansmath]
            coordinate (O) at (0,0);
            shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
            beginscope
            defrx0.71% horizontal radius of the ellipse
            defry0.15% vertical radius of the ellipse
            defz0.725% distance from center of ellipse to origin
            path [name path = ellipse] (0,z) ellipse (rx and ry);
            path [name path = horizontal] (-rx,z-ry*ry/z)
            -- (rx,z-ry*ry/z);
            path [name intersections = of = ellipse and horizontal];
            endscope
            draw (O) circle [radius=2cm];
            filldraw (O) circle (1pt) node[below] $O$;
            draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
            draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
            draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
            x radius = 13.8mm, y radius = 3.6mm];
            draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
            x radius = 13.75mm, y radius = 3.15mm];
            draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

            % Command for the angle
            pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
            endtikzpicture
            enddocument


            enter image description here






            share|improve this answer



























              5














              First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



              documentclass[tikz,border=10pt]standalone
              usepackagesansmath
              usetikzlibraryshadings,intersections,quotes,angles
              begindocument
              begintikzpicture[font = sansmath]
              coordinate (O) at (0,0);
              shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
              beginscope
              defrx0.71% horizontal radius of the ellipse
              defry0.15% vertical radius of the ellipse
              defz0.725% distance from center of ellipse to origin
              path [name path = ellipse] (0,z) ellipse (rx and ry);
              path [name path = horizontal] (-rx,z-ry*ry/z)
              -- (rx,z-ry*ry/z);
              path [name intersections = of = ellipse and horizontal];
              endscope
              draw (O) circle [radius=2cm];
              filldraw (O) circle (1pt) node[below] $O$;
              draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
              draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
              draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
              x radius = 13.8mm, y radius = 3.6mm];
              draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
              x radius = 13.75mm, y radius = 3.15mm];
              draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

              % Command for the angle
              pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
              endtikzpicture
              enddocument


              enter image description here






              share|improve this answer

























                5












                5








                5







                First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



                documentclass[tikz,border=10pt]standalone
                usepackagesansmath
                usetikzlibraryshadings,intersections,quotes,angles
                begindocument
                begintikzpicture[font = sansmath]
                coordinate (O) at (0,0);
                shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
                beginscope
                defrx0.71% horizontal radius of the ellipse
                defry0.15% vertical radius of the ellipse
                defz0.725% distance from center of ellipse to origin
                path [name path = ellipse] (0,z) ellipse (rx and ry);
                path [name path = horizontal] (-rx,z-ry*ry/z)
                -- (rx,z-ry*ry/z);
                path [name intersections = of = ellipse and horizontal];
                endscope
                draw (O) circle [radius=2cm];
                filldraw (O) circle (1pt) node[below] $O$;
                draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
                draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
                draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
                x radius = 13.8mm, y radius = 3.6mm];
                draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
                x radius = 13.75mm, y radius = 3.15mm];
                draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

                % Command for the angle
                pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
                endtikzpicture
                enddocument


                enter image description here






                share|improve this answer













                First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



                documentclass[tikz,border=10pt]standalone
                usepackagesansmath
                usetikzlibraryshadings,intersections,quotes,angles
                begindocument
                begintikzpicture[font = sansmath]
                coordinate (O) at (0,0);
                shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
                beginscope
                defrx0.71% horizontal radius of the ellipse
                defry0.15% vertical radius of the ellipse
                defz0.725% distance from center of ellipse to origin
                path [name path = ellipse] (0,z) ellipse (rx and ry);
                path [name path = horizontal] (-rx,z-ry*ry/z)
                -- (rx,z-ry*ry/z);
                path [name intersections = of = ellipse and horizontal];
                endscope
                draw (O) circle [radius=2cm];
                filldraw (O) circle (1pt) node[below] $O$;
                draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
                draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
                draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
                x radius = 13.8mm, y radius = 3.6mm];
                draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
                x radius = 13.75mm, y radius = 3.15mm];
                draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

                % Command for the angle
                pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
                endtikzpicture
                enddocument


                enter image description here







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 2 days ago









                JouleVJouleV

                12.3k22663




                12.3k22663





















                    5














                    This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




                    1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                    2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                    3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



                    documentclass[tikz,border=3.14mm]standalone
                    usepackagetikz-3dplot
                    usetikzlibrary3d,backgrounds,quotes,angles
                    begindocument
                    tdplotsetmaincoords8000
                    begintikzpicture[tdplot_main_coords]
                    pgfmathsetmacroR2 % radius
                    pgfmathsetmacromyang50 % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                    beginscope[on background layer]
                    draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                    endscope
                    draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                    path (0:R*cos(myang)) coordinate (R)
                    (180:R*cos(myang)) coordinate (L);
                    endscope
                    beginscope[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                    fill (O) circle[radius=1pt] node[below] $O$;
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    angle=R--O--L;
                    endscope
                    endtikzpicture
                    enddocument


                    enter image description here



                    The following animation shows that you can dial view and latitude as you wish.



                    documentclass[tikz,border=3.14mm]standalone
                    usepackagetikz-3dplot
                    usetikzlibrary3d,backgrounds,quotes,angles
                    begindocument
                    foreach Angle in 5,15,...,355
                    tdplotsetmaincoords70+cos(Angle)00
                    begintikzpicture[tdplot_main_coords]
                    pgfmathsetmacroR2 % radius
                    pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                    beginscope[on background layer]
                    draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                    endscope
                    draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                    path (0:R*cos(myang)) coordinate (R)
                    (180:R*cos(myang)) coordinate (L);
                    endscope
                    beginscope[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                    fill (O) circle[radius=1pt] node[below] $O$;
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    angle=R--O--L;
                    endscope
                    endtikzpicture
                    enddocument


                    enter image description here






                    share|improve this answer























                    • Is this a cone in a sphere?

                      – minhthien_2016
                      yesterday












                    • @minhthien_2016 It could be one.

                      – marmot
                      yesterday















                    5














                    This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




                    1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                    2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                    3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



                    documentclass[tikz,border=3.14mm]standalone
                    usepackagetikz-3dplot
                    usetikzlibrary3d,backgrounds,quotes,angles
                    begindocument
                    tdplotsetmaincoords8000
                    begintikzpicture[tdplot_main_coords]
                    pgfmathsetmacroR2 % radius
                    pgfmathsetmacromyang50 % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                    beginscope[on background layer]
                    draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                    endscope
                    draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                    path (0:R*cos(myang)) coordinate (R)
                    (180:R*cos(myang)) coordinate (L);
                    endscope
                    beginscope[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                    fill (O) circle[radius=1pt] node[below] $O$;
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    angle=R--O--L;
                    endscope
                    endtikzpicture
                    enddocument


                    enter image description here



                    The following animation shows that you can dial view and latitude as you wish.



                    documentclass[tikz,border=3.14mm]standalone
                    usepackagetikz-3dplot
                    usetikzlibrary3d,backgrounds,quotes,angles
                    begindocument
                    foreach Angle in 5,15,...,355
                    tdplotsetmaincoords70+cos(Angle)00
                    begintikzpicture[tdplot_main_coords]
                    pgfmathsetmacroR2 % radius
                    pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                    beginscope[on background layer]
                    draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                    endscope
                    draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                    path (0:R*cos(myang)) coordinate (R)
                    (180:R*cos(myang)) coordinate (L);
                    endscope
                    beginscope[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                    fill (O) circle[radius=1pt] node[below] $O$;
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    angle=R--O--L;
                    endscope
                    endtikzpicture
                    enddocument


                    enter image description here






                    share|improve this answer























                    • Is this a cone in a sphere?

                      – minhthien_2016
                      yesterday












                    • @minhthien_2016 It could be one.

                      – marmot
                      yesterday













                    5












                    5








                    5







                    This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




                    1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                    2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                    3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



                    documentclass[tikz,border=3.14mm]standalone
                    usepackagetikz-3dplot
                    usetikzlibrary3d,backgrounds,quotes,angles
                    begindocument
                    tdplotsetmaincoords8000
                    begintikzpicture[tdplot_main_coords]
                    pgfmathsetmacroR2 % radius
                    pgfmathsetmacromyang50 % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                    beginscope[on background layer]
                    draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                    endscope
                    draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                    path (0:R*cos(myang)) coordinate (R)
                    (180:R*cos(myang)) coordinate (L);
                    endscope
                    beginscope[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                    fill (O) circle[radius=1pt] node[below] $O$;
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    angle=R--O--L;
                    endscope
                    endtikzpicture
                    enddocument


                    enter image description here



                    The following animation shows that you can dial view and latitude as you wish.



                    documentclass[tikz,border=3.14mm]standalone
                    usepackagetikz-3dplot
                    usetikzlibrary3d,backgrounds,quotes,angles
                    begindocument
                    foreach Angle in 5,15,...,355
                    tdplotsetmaincoords70+cos(Angle)00
                    begintikzpicture[tdplot_main_coords]
                    pgfmathsetmacroR2 % radius
                    pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                    beginscope[on background layer]
                    draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                    endscope
                    draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                    path (0:R*cos(myang)) coordinate (R)
                    (180:R*cos(myang)) coordinate (L);
                    endscope
                    beginscope[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                    fill (O) circle[radius=1pt] node[below] $O$;
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    angle=R--O--L;
                    endscope
                    endtikzpicture
                    enddocument


                    enter image description here






                    share|improve this answer













                    This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




                    1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                    2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                    3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



                    documentclass[tikz,border=3.14mm]standalone
                    usepackagetikz-3dplot
                    usetikzlibrary3d,backgrounds,quotes,angles
                    begindocument
                    tdplotsetmaincoords8000
                    begintikzpicture[tdplot_main_coords]
                    pgfmathsetmacroR2 % radius
                    pgfmathsetmacromyang50 % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                    beginscope[on background layer]
                    draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                    endscope
                    draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                    path (0:R*cos(myang)) coordinate (R)
                    (180:R*cos(myang)) coordinate (L);
                    endscope
                    beginscope[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                    fill (O) circle[radius=1pt] node[below] $O$;
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    angle=R--O--L;
                    endscope
                    endtikzpicture
                    enddocument


                    enter image description here



                    The following animation shows that you can dial view and latitude as you wish.



                    documentclass[tikz,border=3.14mm]standalone
                    usepackagetikz-3dplot
                    usetikzlibrary3d,backgrounds,quotes,angles
                    begindocument
                    foreach Angle in 5,15,...,355
                    tdplotsetmaincoords70+cos(Angle)00
                    begintikzpicture[tdplot_main_coords]
                    pgfmathsetmacroR2 % radius
                    pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                    beginscope[on background layer]
                    draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                    endscope
                    draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                    path (0:R*cos(myang)) coordinate (R)
                    (180:R*cos(myang)) coordinate (L);
                    endscope
                    beginscope[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                    fill (O) circle[radius=1pt] node[below] $O$;
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    angle=R--O--L;
                    endscope
                    endtikzpicture
                    enddocument


                    enter image description here







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 2 days ago









                    marmotmarmot

                    116k5150282




                    116k5150282












                    • Is this a cone in a sphere?

                      – minhthien_2016
                      yesterday












                    • @minhthien_2016 It could be one.

                      – marmot
                      yesterday

















                    • Is this a cone in a sphere?

                      – minhthien_2016
                      yesterday












                    • @minhthien_2016 It could be one.

                      – marmot
                      yesterday
















                    Is this a cone in a sphere?

                    – minhthien_2016
                    yesterday






                    Is this a cone in a sphere?

                    – minhthien_2016
                    yesterday














                    @minhthien_2016 It could be one.

                    – marmot
                    yesterday





                    @minhthien_2016 It could be one.

                    – marmot
                    yesterday










                    medihde is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    medihde is a new contributor. Be nice, and check out our Code of Conduct.












                    medihde is a new contributor. Be nice, and check out our Code of Conduct.











                    medihde is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483789%2fadd-an-angle-to-a-sphere%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    -tikz-angles, tikz-pgf

                    Popular posts from this blog

                    Frič See also Navigation menuinternal link

                    Identify plant with long narrow paired leaves and reddish stems Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is this plant with long sharp leaves? Is it a weed?What is this 3ft high, stalky plant, with mid sized narrow leaves?What is this young shrub with opposite ovate, crenate leaves and reddish stems?What is this plant with large broad serrated leaves?Identify this upright branching weed with long leaves and reddish stemsPlease help me identify this bulbous plant with long, broad leaves and white flowersWhat is this small annual with narrow gray/green leaves and rust colored daisy-type flowers?What is this chilli plant?Does anyone know what type of chilli plant this is?Help identify this plant

                    fontconfig warning: “/etc/fonts/fonts.conf”, line 100: unknown “element blank” The 2019 Stack Overflow Developer Survey Results Are In“tar: unrecognized option --warning” during 'apt-get install'How to fix Fontconfig errorHow do I figure out which font file is chosen for a system generic font alias?Why are some apt-get-installed fonts being ignored by fc-list, xfontsel, etc?Reload settings in /etc/fonts/conf.dTaking 30 seconds longer to boot after upgrade from jessie to stretchHow to match multiple font names with a single <match> element?Adding a custom font to fontconfigRemoving fonts from fontconfig <match> resultsBroken fonts after upgrading Firefox ESR to latest Firefox