If 'B is more likely given A', then 'A is more likely given B' Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)What is a very intuitive way to teach the Bayes formula to undergraduates?Why does “explaining away” make intuitive sense?What is the intuition behind (M)ANCOVA and when/why should one use it?An example of r.v.s such that their distribution has more (conditional) independencies than their directed graphical modelIntuition for “weights” in simple linear regressionIntuitive explanation of the F-statistic formula?the intuition behind that the variance of increment for Brownian Motion is time intervalWhy is it that when the score variance gets LARGER we get MORE confident about the MLE estimate?Conditional probability question - given pdfIntuition behind infinite CRLBWhy do parametric models learn more slowly by design?

How to do this path/lattice with tikz

How to find all the available tools in macOS terminal?

Is the address of a local variable a constexpr?

What happens to sewage if there is no river near by?

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?

If 'B is more likely given A', then 'A is more likely given B'

Proof involving the spectral radius and the Jordan canonical form

How does a Death Domain cleric's Touch of Death feature work with Touch-range spells delivered by familiars?

How to deal with a team lead who never gives me credit?

How much radiation do nuclear physics experiments expose researchers to nowadays?

How can I make names more distinctive without making them longer?

Does accepting a pardon have any bearing on trying that person for the same crime in a sovereign jurisdiction?

Why is "Consequences inflicted." not a sentence?

Diagram with tikz

What is the correct way to use the pinch test for dehydration?

Stars Make Stars

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

Can inflation occur in a positive-sum game currency system such as the Stack Exchange reputation system?

Right-skewed distribution with mean equals to mode?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Are my PIs rude or am I just being too sensitive?

Disable hyphenation for an entire paragraph

How do I mention the quality of my school without bragging

Is there a concise way to say "all of the X, one of each"?



If 'B is more likely given A', then 'A is more likely given B'



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)What is a very intuitive way to teach the Bayes formula to undergraduates?Why does “explaining away” make intuitive sense?What is the intuition behind (M)ANCOVA and when/why should one use it?An example of r.v.s such that their distribution has more (conditional) independencies than their directed graphical modelIntuition for “weights” in simple linear regressionIntuitive explanation of the F-statistic formula?the intuition behind that the variance of increment for Brownian Motion is time intervalWhy is it that when the score variance gets LARGER we get MORE confident about the MLE estimate?Conditional probability question - given pdfIntuition behind infinite CRLBWhy do parametric models learn more slowly by design?



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








8












$begingroup$


I am trying to get a clearer intuition behind: "If $A$ makes $B$ more likely then $B$ makes $A$ more likely" i.e




Let $n(S)$ denote the size of the space in which $A$ and $B$ are, then



Claim: $P(B|A)>P(B)$ so $n(AB)/n(A) > n(B)/n(S)$



so $n(AB)/n(B) > n(A)/n(S)$



which is $P(A|B)>P(A)$




I understand the math, but why does this make intuitive sense?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    I edited the question to removed the word 'make'. This question sounded a bit like those ambiguous questions on Facebook, those where you have to solve some algebraic sum with pictures and people get widely different answers due to different interpretations of the question. That is not something we want here. (an alternative is to close the question for being unclear and have the OP change it).
    $endgroup$
    – Martijn Weterings
    11 hours ago


















8












$begingroup$


I am trying to get a clearer intuition behind: "If $A$ makes $B$ more likely then $B$ makes $A$ more likely" i.e




Let $n(S)$ denote the size of the space in which $A$ and $B$ are, then



Claim: $P(B|A)>P(B)$ so $n(AB)/n(A) > n(B)/n(S)$



so $n(AB)/n(B) > n(A)/n(S)$



which is $P(A|B)>P(A)$




I understand the math, but why does this make intuitive sense?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    I edited the question to removed the word 'make'. This question sounded a bit like those ambiguous questions on Facebook, those where you have to solve some algebraic sum with pictures and people get widely different answers due to different interpretations of the question. That is not something we want here. (an alternative is to close the question for being unclear and have the OP change it).
    $endgroup$
    – Martijn Weterings
    11 hours ago














8












8








8


2



$begingroup$


I am trying to get a clearer intuition behind: "If $A$ makes $B$ more likely then $B$ makes $A$ more likely" i.e




Let $n(S)$ denote the size of the space in which $A$ and $B$ are, then



Claim: $P(B|A)>P(B)$ so $n(AB)/n(A) > n(B)/n(S)$



so $n(AB)/n(B) > n(A)/n(S)$



which is $P(A|B)>P(A)$




I understand the math, but why does this make intuitive sense?










share|cite|improve this question











$endgroup$




I am trying to get a clearer intuition behind: "If $A$ makes $B$ more likely then $B$ makes $A$ more likely" i.e




Let $n(S)$ denote the size of the space in which $A$ and $B$ are, then



Claim: $P(B|A)>P(B)$ so $n(AB)/n(A) > n(B)/n(S)$



so $n(AB)/n(B) > n(A)/n(S)$



which is $P(A|B)>P(A)$




I understand the math, but why does this make intuitive sense?







probability inference conditional-probability intuition association-measure






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 11 hours ago









Martijn Weterings

14.8k2064




14.8k2064










asked yesterday









Rahul DeoraRahul Deora

12519




12519







  • 1




    $begingroup$
    I edited the question to removed the word 'make'. This question sounded a bit like those ambiguous questions on Facebook, those where you have to solve some algebraic sum with pictures and people get widely different answers due to different interpretations of the question. That is not something we want here. (an alternative is to close the question for being unclear and have the OP change it).
    $endgroup$
    – Martijn Weterings
    11 hours ago













  • 1




    $begingroup$
    I edited the question to removed the word 'make'. This question sounded a bit like those ambiguous questions on Facebook, those where you have to solve some algebraic sum with pictures and people get widely different answers due to different interpretations of the question. That is not something we want here. (an alternative is to close the question for being unclear and have the OP change it).
    $endgroup$
    – Martijn Weterings
    11 hours ago








1




1




$begingroup$
I edited the question to removed the word 'make'. This question sounded a bit like those ambiguous questions on Facebook, those where you have to solve some algebraic sum with pictures and people get widely different answers due to different interpretations of the question. That is not something we want here. (an alternative is to close the question for being unclear and have the OP change it).
$endgroup$
– Martijn Weterings
11 hours ago





$begingroup$
I edited the question to removed the word 'make'. This question sounded a bit like those ambiguous questions on Facebook, those where you have to solve some algebraic sum with pictures and people get widely different answers due to different interpretations of the question. That is not something we want here. (an alternative is to close the question for being unclear and have the OP change it).
$endgroup$
– Martijn Weterings
11 hours ago











13 Answers
13






active

oldest

votes


















17












$begingroup$

I think another mathematical way of putting it may help. Consider the claim in the context of Bayes' rule:



Claim: if $P(B|A)>P(B)$ then $P(A|B) > P(A)$



Bayes' rule:
$$ P(A mid B) = fracP(B mid A) , P(A)P(B) $$



assuming $P(B)$ nonzero. Thus



$$fracB)P(A) = fracP(BP(B)$$



If $P(B|A)>P(B)$, then $fracP(BP(B) > 1$.



Then $fracB)P(A) > 1$, and so $P(A|B) > P(A)$.



This proves the claim and an even stronger conclusion - that the respective proportions of the likelihoods must be equal.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I liked this because it shows the stronger link "if A makes B x percent more likely, then B makes A x percent more likely"
    $endgroup$
    – probabilityislogic
    19 hours ago










  • $begingroup$
    @probabilityislogic Phrasing it that way introduces ambiguity. If the prior probability is 10%, and the posterior is 15%, did the probability increase 5% (15% minus 10%) or 50% (15% divided by 10%)?
    $endgroup$
    – Acccumulation
    10 hours ago










  • $begingroup$
    A simpler proof: If $P(B|A) > P(B)$, then using that and Bayes' Rule, we have $P(A|B) = P(B|A)P(A)/P(B) > P(B)P(A)/P(B) = P(A)$
    $endgroup$
    – Ray
    4 hours ago



















10












$begingroup$

Well, I don't like the word "makes" in the question. That implies some sort of causality and causality usually doesn't reverse.



But you asked for intuition. So, I'd think about some examples, because that seems to spark intuition. Choose one you like:



If a person is a woman, it is more likely that the person voted for a Democrat.

If a person voted for a Democrat, it is more likely that the person is a woman.



If a man is a professional basketball center, it is more likely that he is over 2 meters tall.

If a man is over 2 meters tall, it is more likely that he is a basketball center.



If it is over 40 degrees Celsius, it is more likely that there will be a blackout.

If there has been a blackout, it is more likely that it is over 40 degrees.



And so on.






share|cite|improve this answer











$endgroup$








  • 4




    $begingroup$
    That's not about probability. That's about 1 to 1 relationships.
    $endgroup$
    – Peter Flom
    yesterday






  • 6




    $begingroup$
    @jww Imagine the statement "if it is raining, the street is wet" (and suppose that's a valid implication for the moment, while the converse is not). Now take a large number of "samples" in different times and places, where you record whether it's raining and whether the street is wet. The street will be wet in more of the samples where it's raining than the samples where it's not; but also, it will be raining in more of the samples where the street is wet than the samples where the street is dry. That's probability.
    $endgroup$
    – hobbs
    yesterday






  • 3




    $begingroup$
    Both phenomena are caused by the same implication; the implication only works one way, but observing the consequent makes it more likely that you're looking at a sample where the antecedent is true.
    $endgroup$
    – hobbs
    yesterday






  • 6




    $begingroup$
    @Barmar Sorry, but that partly demonstrates the correctness of my logic. Because say 36/25,000 is a whole lot higher than 1/150,000,000.
    $endgroup$
    – Peter Flom
    yesterday






  • 6




    $begingroup$
    More likely than someone who is less than 2 meters tall.
    $endgroup$
    – Peter Flom
    yesterday


















9












$begingroup$

To add on the answer by @Dasherman: What can it mean to say that two events are related, or maybe associated or correlated? Maybe we could for a definition compare the joint probability (Assuming $DeclareMathOperatorPmathbbP P(A)>0, P(B)>0$):
$$
eta(A,B)=fracP(A cap B)P(A) P(B)
$$

so if $eta$ is larger than one, $A$ and $B$ occurs together more often than under independence. Then we can say that $A$ and $B$ are positively related.



But now, using the definition of conditional probability, $fracP(A cap B)P(A) P(B)>1$ is an easy consequence of $P(B mid A) > P(B)$. But $fracP(A cap B)P(A) P(B)$ is completely symmetric in $A$ and $B$ (interchanging all occurrences of the symbol $A$ with $B$ and vice versa) leaves the same formulas, so is also equivalent with $P(A mid B) > P(A)$. That gives the result. So the intuition you ask for is that $eta(A,B)$ is symmetric in $A$ and $B$.



The answer by @gunes gave a practical example, and it is easy to make others the same way.






share|cite|improve this answer











$endgroup$




















    8












    $begingroup$

    By way of intuition, real world examples such as Peter Flom gives are most helpful for some people. The other thing that commonly helps people is pictures. So, to cover most bases, let's have some pictures.



    Conditional probability diagram showing independenceConditional probability diagram showing dependence



    What we have here are two very basic diagrams showing probabilities. The first shows two independent predicates I'll call Red and Plain. It is clear that they are independent because the lines line up. The proportion of plain area that is red is the same as the proportion of stripy area that is red and is also the same as the total proportion that is red.



    In the second image, we have non-independent distributions. Specifically, we have expanded some of the plain red area into the stripy area without changing the fact that it is red. Clearly then, being red makes being plain more likely.



    Meanwhile, have a look at the plain side of that image. Clearly the proportion of the plain region that is red is greater than the proportion of the whole image that is red. That is because the plain region has been given a bunch more area and all of it is red.



    So, red makes plain more likely, and plain makes red more likely.



    What's actually happening here? A is evidence for B (that is, A makes B more likely) when the area that contains both A and B is bigger than would be predicted if they were independent. Because the intersection between A and B is the same as the intersection between B and A, that also implies that B is evidence for A.



    One note of caution: although the argument above seems very symmetrical, it may not be the case that the strength of evidence in both directions is equal. For example, consider this third image. Conditional probability diagram showing extreme dependence

    Here the same thing has happened: plain red has eaten up territory previously belonging to stripy red. In fact, it has completely finished the job!



    Note that the point being red outright guarantees plainness because there are no stripy red regions left. However a point being plain has not guaranteed redness, because there are still green regions left. Nevertheless, a point in the box being plain increases the chance that it is red, and a point being red increases the chance that it is plain. Both directions imply more likely, just not by the same amount.






    share|cite|improve this answer










    New contributor




    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$












    • $begingroup$
      I like the images :) However It looks like either the images or the explanation is flipped: In the second image, we have non-independent distributions. Specifically, we have moved some of the stripy red area into the plain area without changing the fact that it is red. Clearly then, being red makes being plain more likely. -- your second image has gained plain area than the first, so going from image 1 to 2 we have moved plain area into the striped area.
      $endgroup$
      – Pod
      19 hours ago










    • $begingroup$
      So, if I have venn diagram with some common A,B intersection area and all I do is increase that intersection area, I automatically add more A,B for the entire space(without making the space larger) and change/increase n(A)/n(S) and n(B)/n(S) as a consequence. Right? More comments?
      $endgroup$
      – Rahul Deora
      18 hours ago


















    2












    $begingroup$

    If A makes B more likely, this means the events are somehow related. This relation works both ways.



    If A makes B more likely, this means that A and B tend to happen together. This then means that B also makes A more likely.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      This perhaps could use some expansion? Without a definition of related it is a bit empty.
      $endgroup$
      – mdewey
      yesterday






    • 2




      $begingroup$
      I was trying to stay away from anything rigorous, since OP asked for an intuitive explanation. You are right that it is quite empty as it is now, but I'm not sure how to expand it in an intuitive way. I have added an attempt.
      $endgroup$
      – Dasherman
      yesterday



















    2












    $begingroup$

    If A makes B more likely, A has crucial information that B can infer about itself. Despite the fact that it might not contribute the same amount, that information is not lost the other way around. Eventually, we have two events that their occurrence support each other. I can’t seem to imagine a scenario where occurrence of A increases the likelihood of B, and occurrence of B decreases the likelihood of A. For example, if it rains, the floor will be wet with high probability, and if the floor is wet, it doesn’t mean that it rained but it doesn’t decrease the chances.






    share|cite|improve this answer











    $endgroup$




















      2












      $begingroup$

      You can make the math more intuitive by imagining a contingency table.



      $beginarraycc
      beginarraycc
      && A & lnot A & \
      &a+b+c+d & a+c & b+d \hline
      B& a+b& a & b \
      lnot B & c+d& c & d \
      endarray
      endarray$



      • When $A$ and $B$ are independent then the joint probabilities are products of the marginal probabilities $$beginarraycc
        beginarraycc
        && A & lnot A & \
        &1 & x & 1-x \hline
        B& y& a=xy & b=(1-x)y \
        lnot B & 1-y& c=x (1-y) & d=(1-x)(1-y)\
        endarray
        endarray$$
        In such case you would have similar marginal and conditional probabilities, e.g. $P (A) = P (A|B) $ and $P (B)=P (B|A) $.



      • When there is no independence then you could see this as leaving the parameters $a,b,c,d $ the same (as products of the margins) but with just an adjustment by $pm z $ $$beginarraycc
        beginarraycc
        && A & lnot A & \
        &1 & x & 1-x \hline
        B& y& a+z & b-z \
        lnot B & 1-y& c-z & d+z\
        endarray
        endarray$$



        You could see this $z$ as breaking the equality of the marginal and conditional probabilities or breaking the relationship for the joint probabilities being products of the marginal probabilities.



        Now, from this point of view (of breaking these equalities) you can see that this breaking happens in two ways both for $P(A|B) neq P(A)$ and $P(B|A) neq P(B)$. And the inequality will be for both cases $>$ when $z$ is positive and $<$ when $z $ is negative.



      So you could see the connection $P(A|B) > P(A)$ then $P(B|A) > P(B)$ via the joint probability $P(B,A) > P (A) P (B) $.



      If A and B often happen together (joint probability is higher then product of marginal probabilities) then observing the one will make the (conditional) probability of the other higher.






      share|cite|improve this answer











      $endgroup$




















        2












        $begingroup$

        Suppose we denote the posterior-to-prior probability ratio of an event as:



        $$Delta(A|B) equiv fracmathbbP(AmathbbP(A)$$



        Then an alternative expression of Bayes' theorem (see this related post) is:



        $$Delta(A|B)
        = fracmathbbP(AmathbbP(A)
        = fracmathbbP(A cap B)mathbbP(A) mathbbP(B)
        = fracA)mathbbP(B)
        = Delta(B|A).$$



        The posterior-to-prior probability ratio tells us whether the argument event is made more or less likely by the occurrence of the conditioning event (and how much more or less likely). The above form of Bayes' theorem shows use that posterior-to-prior probability ratio is symmetric in the variables.$^dagger$ For example, if observing $B$ makes $A$ more likely than it was a priori, then observing $A$ makes $B$ more likely than it was a priori.




        $^dagger$ Note that this is a probability rule, and so it should not be interpreted causally. This symmetry is true in a probabilistic sense for passive observation ---however, it is not true if you intervene in the system to change $A$ or $B$. In that latter case you would need to use causal operations (e.g., the $textdo$ operator) to find the effect of the change in the conditioning variable.






        share|cite|improve this answer









        $endgroup$




















          1












          $begingroup$

          You are told that Sam is a woman and Kim is a man, and one of the two wears make-up and the other does not. Who of them would you guess wears make-up?



          You are told that Sam wears make-up and Kim doesn't, and one of the two is a man and one is a woman. Who would you guess is the woman?






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            It is not so straightforward to connect this to the original problem. What exactly is event A and what is event B? Here it seems more like some comparison of probabilities. Event A is 'x is a women' (not A is the event 'x is a man'). And event B is 'x wears makeup'. But now we suddenly have a Sam and a Kim, where does that come from and should we use anything of information about the subjective masculinity or femininity of their names?
            $endgroup$
            – Martijn Weterings
            yesterday



















          1












          $begingroup$

          It seems there is some confusion between causation and correlation. Indeed, the question statement is false for causation, as can be seen by an example such as:



          • If a dog is wearing a scarf, then it is a domesticated animal.

          The following is not true:



          • Seeing a domesticated animal wearing a scarf implies it is a dog.

          • Seeing a domesticated dog implies it is wearing a scarf.

          However, if you are thinking of probabilities (correlation) then it IS true:



          • Dogs wearing scarfs are much more likely to be a domesticated animal than dogs not wearing scarfs (or animals in general for that matter)

          The following is true:



          • A domesticated animal wearing a scarf is more likely to be a dog than another animal.

          • A domesticated dog is more likely to be wearing a scarf than a non-domesticated dog.

          If this is not intuitive, think of a pool of animals including ants, dogs and cats. Dogs and cats can both be domesticated and wear scarfs, ants can't neither.



          1. If you increase the probability of domesticated animals in your pool, it also will mean you will increase the chance of seeing an animal wearing a scarf.

          2. If you increase the probability of either cats or dogs, then you will also increase the probability of seeing an animal wearing a scarf.

          Being domesticated is the "secret" link between the animal and wearing a scarf, and that "secret" link will exert its influence both ways.



          Edit: Giving an example to your question in the comments:



          Imagine a world where animals are either Cats or Dogs. They can be either domesticated or not. They can wear a scarf or not. Imagine there exist 100 total animals, 50 Dogs and 50 Cats.



          Now consider the statement A to be: "Dogs wearing scarfs are thrice as likely to be a domesticated animal than dogs not wearing scarfs".



          If A is not true, then you can imagine that the world could be made of 50 Dogs, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs). Same stats for cats.



          Then, if you saw a domesticated animal in this world, it would have 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) and 40% chance of having a scarf (20/50, 10 Dogs and 10 Cats out of 50 domesticated animals).



          However, if A is true, then you have a world where there are 50 Dogs, 25 of them domesticated (of which 15 wear scarfs), 25 of them wild (of which 5 wear scarfs). Cats maintain the old stats: 50 Cats, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs).



          Then, if you saw a domesticated animal in this world, it would have the same 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) but would have 50% (25/50, 15 Dogs and 10 Cats out of 50 domesticated animals).



          As you can see, if you say that A is true, then if you saw a domesticated animal wearing a scarf in the world, it would be more likely a Dog (60% or 15/25) than any other animal (in this case Cat, 40% or 10/25).






          share|cite|improve this answer










          New contributor




          H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$












          • $begingroup$
            This is the line I have a problem with "A domesticated animal wearing a scarf is more likely to be a dog than another animal." When we made our initial statement we did not make any claim on the other animals that could wear scarfs. There could be 100s. We only made a statement about dogs.
            $endgroup$
            – Rahul Deora
            18 hours ago











          • $begingroup$
            See if my edit helps with your particular issue.
            $endgroup$
            – H4uZ
            17 hours ago


















          0












          $begingroup$

          There is a confusion here between causation and correlation. So I'll give you an example where the exact opposite happens.



          Some people are rich, some are poor. Some poor people are given benefits, which makes them less poor. But people who get benefits are still more likely to be poor, even with benefits.



          If you are given benefits, that makes it more likely that you can afford cinema tickets. ("Makes it more likely" meaning causality). But if you can afford cinema tickets, that makes it less likely that you are among the people who are poor enough to get benefits, so if you can afford cinema tickets, you are less likely to get benefits.






          share|cite|improve this answer









          $endgroup$








          • 5




            $begingroup$
            This isn't an answer to the question. Interesting, but not an answer. In fact, it's talking about a different scenario; the reason the opposite happens is that it's using two different metrics that are named similarly (poor without benefits v.s. poor with benefits) and as such is a completely different scenario.
            $endgroup$
            – wizzwizz4
            yesterday



















          0












          $begingroup$

          The intuition becomes clear if you look at the stronger statement:




          If A implies B, then B makes A more likely.




          Implication:
          A true -> B true
          A false -> B true or false
          Reverse implication:
          B true -> A true or false
          B false -> A false


          Obviously A is more likely to be true if B is known to be true as well, because if B was false then so would be A. The same logic applies to the weaker statement:




          If A makes B more likely, then B makes A more likely.




          Weak implication:
          A true -> B true or (unlikely) false
          A false -> B true or false
          Reverse weak implication:
          B true -> A true or false
          B false -> A false or (unlikely) true





          share|cite|improve this answer








          New contributor




          Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$












          • $begingroup$
            I think what you are saying in the first statement is that in a venn diagram if A is contained in B, then if B is true n(A)/n(B) must be higher than n(A)/n(S) as B is a smaller space than S. Even in the second, you say likewise?
            $endgroup$
            – Rahul Deora
            17 hours ago










          • $begingroup$
            @RahulDeora - Yes, that's how it works. The weak version is much less obvious, but you already did the math anyway. What you asked for is the intuition behind the result, which can be best observed in the stronger statement.
            $endgroup$
            – Rainer P.
            15 hours ago


















          0












          $begingroup$

          Suppose Alice has a higher free throw rate than average. Then the probability of a shot being successful, given that it's attempted by Alice, is greater than the probability of a shot being successful in general $P(successful|Alice)>P(successful)$. We can also conclude that Alice's share of successful shots is greater than her share of shots in general: $P(Alice|successful)>P(Alice)$.



          Or suppose there's a school that has 10% of the students in its school district, but 15% of the straight-A students. Then clearly the percentage of students at that school who are straight-A students is higher than the district-wide percentage.



          Another way of looking at it: A is more likely, given B, if $P(A&B)>P(A)P(B)$, and that is completely symmetrical with respect to $A$ and $B$.






          share|cite|improve this answer









          $endgroup$











            protected by gung 17 hours ago



            Thank you for your interest in this question.
            Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).



            Would you like to answer one of these unanswered questions instead?














            13 Answers
            13






            active

            oldest

            votes








            13 Answers
            13






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            17












            $begingroup$

            I think another mathematical way of putting it may help. Consider the claim in the context of Bayes' rule:



            Claim: if $P(B|A)>P(B)$ then $P(A|B) > P(A)$



            Bayes' rule:
            $$ P(A mid B) = fracP(B mid A) , P(A)P(B) $$



            assuming $P(B)$ nonzero. Thus



            $$fracB)P(A) = fracP(BP(B)$$



            If $P(B|A)>P(B)$, then $fracP(BP(B) > 1$.



            Then $fracB)P(A) > 1$, and so $P(A|B) > P(A)$.



            This proves the claim and an even stronger conclusion - that the respective proportions of the likelihoods must be equal.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I liked this because it shows the stronger link "if A makes B x percent more likely, then B makes A x percent more likely"
              $endgroup$
              – probabilityislogic
              19 hours ago










            • $begingroup$
              @probabilityislogic Phrasing it that way introduces ambiguity. If the prior probability is 10%, and the posterior is 15%, did the probability increase 5% (15% minus 10%) or 50% (15% divided by 10%)?
              $endgroup$
              – Acccumulation
              10 hours ago










            • $begingroup$
              A simpler proof: If $P(B|A) > P(B)$, then using that and Bayes' Rule, we have $P(A|B) = P(B|A)P(A)/P(B) > P(B)P(A)/P(B) = P(A)$
              $endgroup$
              – Ray
              4 hours ago
















            17












            $begingroup$

            I think another mathematical way of putting it may help. Consider the claim in the context of Bayes' rule:



            Claim: if $P(B|A)>P(B)$ then $P(A|B) > P(A)$



            Bayes' rule:
            $$ P(A mid B) = fracP(B mid A) , P(A)P(B) $$



            assuming $P(B)$ nonzero. Thus



            $$fracB)P(A) = fracP(BP(B)$$



            If $P(B|A)>P(B)$, then $fracP(BP(B) > 1$.



            Then $fracB)P(A) > 1$, and so $P(A|B) > P(A)$.



            This proves the claim and an even stronger conclusion - that the respective proportions of the likelihoods must be equal.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I liked this because it shows the stronger link "if A makes B x percent more likely, then B makes A x percent more likely"
              $endgroup$
              – probabilityislogic
              19 hours ago










            • $begingroup$
              @probabilityislogic Phrasing it that way introduces ambiguity. If the prior probability is 10%, and the posterior is 15%, did the probability increase 5% (15% minus 10%) or 50% (15% divided by 10%)?
              $endgroup$
              – Acccumulation
              10 hours ago










            • $begingroup$
              A simpler proof: If $P(B|A) > P(B)$, then using that and Bayes' Rule, we have $P(A|B) = P(B|A)P(A)/P(B) > P(B)P(A)/P(B) = P(A)$
              $endgroup$
              – Ray
              4 hours ago














            17












            17








            17





            $begingroup$

            I think another mathematical way of putting it may help. Consider the claim in the context of Bayes' rule:



            Claim: if $P(B|A)>P(B)$ then $P(A|B) > P(A)$



            Bayes' rule:
            $$ P(A mid B) = fracP(B mid A) , P(A)P(B) $$



            assuming $P(B)$ nonzero. Thus



            $$fracB)P(A) = fracP(BP(B)$$



            If $P(B|A)>P(B)$, then $fracP(BP(B) > 1$.



            Then $fracB)P(A) > 1$, and so $P(A|B) > P(A)$.



            This proves the claim and an even stronger conclusion - that the respective proportions of the likelihoods must be equal.






            share|cite|improve this answer











            $endgroup$



            I think another mathematical way of putting it may help. Consider the claim in the context of Bayes' rule:



            Claim: if $P(B|A)>P(B)$ then $P(A|B) > P(A)$



            Bayes' rule:
            $$ P(A mid B) = fracP(B mid A) , P(A)P(B) $$



            assuming $P(B)$ nonzero. Thus



            $$fracB)P(A) = fracP(BP(B)$$



            If $P(B|A)>P(B)$, then $fracP(BP(B) > 1$.



            Then $fracB)P(A) > 1$, and so $P(A|B) > P(A)$.



            This proves the claim and an even stronger conclusion - that the respective proportions of the likelihoods must be equal.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited yesterday

























            answered yesterday









            Aaron HallAaron Hall

            353215




            353215











            • $begingroup$
              I liked this because it shows the stronger link "if A makes B x percent more likely, then B makes A x percent more likely"
              $endgroup$
              – probabilityislogic
              19 hours ago










            • $begingroup$
              @probabilityislogic Phrasing it that way introduces ambiguity. If the prior probability is 10%, and the posterior is 15%, did the probability increase 5% (15% minus 10%) or 50% (15% divided by 10%)?
              $endgroup$
              – Acccumulation
              10 hours ago










            • $begingroup$
              A simpler proof: If $P(B|A) > P(B)$, then using that and Bayes' Rule, we have $P(A|B) = P(B|A)P(A)/P(B) > P(B)P(A)/P(B) = P(A)$
              $endgroup$
              – Ray
              4 hours ago

















            • $begingroup$
              I liked this because it shows the stronger link "if A makes B x percent more likely, then B makes A x percent more likely"
              $endgroup$
              – probabilityislogic
              19 hours ago










            • $begingroup$
              @probabilityislogic Phrasing it that way introduces ambiguity. If the prior probability is 10%, and the posterior is 15%, did the probability increase 5% (15% minus 10%) or 50% (15% divided by 10%)?
              $endgroup$
              – Acccumulation
              10 hours ago










            • $begingroup$
              A simpler proof: If $P(B|A) > P(B)$, then using that and Bayes' Rule, we have $P(A|B) = P(B|A)P(A)/P(B) > P(B)P(A)/P(B) = P(A)$
              $endgroup$
              – Ray
              4 hours ago
















            $begingroup$
            I liked this because it shows the stronger link "if A makes B x percent more likely, then B makes A x percent more likely"
            $endgroup$
            – probabilityislogic
            19 hours ago




            $begingroup$
            I liked this because it shows the stronger link "if A makes B x percent more likely, then B makes A x percent more likely"
            $endgroup$
            – probabilityislogic
            19 hours ago












            $begingroup$
            @probabilityislogic Phrasing it that way introduces ambiguity. If the prior probability is 10%, and the posterior is 15%, did the probability increase 5% (15% minus 10%) or 50% (15% divided by 10%)?
            $endgroup$
            – Acccumulation
            10 hours ago




            $begingroup$
            @probabilityislogic Phrasing it that way introduces ambiguity. If the prior probability is 10%, and the posterior is 15%, did the probability increase 5% (15% minus 10%) or 50% (15% divided by 10%)?
            $endgroup$
            – Acccumulation
            10 hours ago












            $begingroup$
            A simpler proof: If $P(B|A) > P(B)$, then using that and Bayes' Rule, we have $P(A|B) = P(B|A)P(A)/P(B) > P(B)P(A)/P(B) = P(A)$
            $endgroup$
            – Ray
            4 hours ago





            $begingroup$
            A simpler proof: If $P(B|A) > P(B)$, then using that and Bayes' Rule, we have $P(A|B) = P(B|A)P(A)/P(B) > P(B)P(A)/P(B) = P(A)$
            $endgroup$
            – Ray
            4 hours ago














            10












            $begingroup$

            Well, I don't like the word "makes" in the question. That implies some sort of causality and causality usually doesn't reverse.



            But you asked for intuition. So, I'd think about some examples, because that seems to spark intuition. Choose one you like:



            If a person is a woman, it is more likely that the person voted for a Democrat.

            If a person voted for a Democrat, it is more likely that the person is a woman.



            If a man is a professional basketball center, it is more likely that he is over 2 meters tall.

            If a man is over 2 meters tall, it is more likely that he is a basketball center.



            If it is over 40 degrees Celsius, it is more likely that there will be a blackout.

            If there has been a blackout, it is more likely that it is over 40 degrees.



            And so on.






            share|cite|improve this answer











            $endgroup$








            • 4




              $begingroup$
              That's not about probability. That's about 1 to 1 relationships.
              $endgroup$
              – Peter Flom
              yesterday






            • 6




              $begingroup$
              @jww Imagine the statement "if it is raining, the street is wet" (and suppose that's a valid implication for the moment, while the converse is not). Now take a large number of "samples" in different times and places, where you record whether it's raining and whether the street is wet. The street will be wet in more of the samples where it's raining than the samples where it's not; but also, it will be raining in more of the samples where the street is wet than the samples where the street is dry. That's probability.
              $endgroup$
              – hobbs
              yesterday






            • 3




              $begingroup$
              Both phenomena are caused by the same implication; the implication only works one way, but observing the consequent makes it more likely that you're looking at a sample where the antecedent is true.
              $endgroup$
              – hobbs
              yesterday






            • 6




              $begingroup$
              @Barmar Sorry, but that partly demonstrates the correctness of my logic. Because say 36/25,000 is a whole lot higher than 1/150,000,000.
              $endgroup$
              – Peter Flom
              yesterday






            • 6




              $begingroup$
              More likely than someone who is less than 2 meters tall.
              $endgroup$
              – Peter Flom
              yesterday















            10












            $begingroup$

            Well, I don't like the word "makes" in the question. That implies some sort of causality and causality usually doesn't reverse.



            But you asked for intuition. So, I'd think about some examples, because that seems to spark intuition. Choose one you like:



            If a person is a woman, it is more likely that the person voted for a Democrat.

            If a person voted for a Democrat, it is more likely that the person is a woman.



            If a man is a professional basketball center, it is more likely that he is over 2 meters tall.

            If a man is over 2 meters tall, it is more likely that he is a basketball center.



            If it is over 40 degrees Celsius, it is more likely that there will be a blackout.

            If there has been a blackout, it is more likely that it is over 40 degrees.



            And so on.






            share|cite|improve this answer











            $endgroup$








            • 4




              $begingroup$
              That's not about probability. That's about 1 to 1 relationships.
              $endgroup$
              – Peter Flom
              yesterday






            • 6




              $begingroup$
              @jww Imagine the statement "if it is raining, the street is wet" (and suppose that's a valid implication for the moment, while the converse is not). Now take a large number of "samples" in different times and places, where you record whether it's raining and whether the street is wet. The street will be wet in more of the samples where it's raining than the samples where it's not; but also, it will be raining in more of the samples where the street is wet than the samples where the street is dry. That's probability.
              $endgroup$
              – hobbs
              yesterday






            • 3




              $begingroup$
              Both phenomena are caused by the same implication; the implication only works one way, but observing the consequent makes it more likely that you're looking at a sample where the antecedent is true.
              $endgroup$
              – hobbs
              yesterday






            • 6




              $begingroup$
              @Barmar Sorry, but that partly demonstrates the correctness of my logic. Because say 36/25,000 is a whole lot higher than 1/150,000,000.
              $endgroup$
              – Peter Flom
              yesterday






            • 6




              $begingroup$
              More likely than someone who is less than 2 meters tall.
              $endgroup$
              – Peter Flom
              yesterday













            10












            10








            10





            $begingroup$

            Well, I don't like the word "makes" in the question. That implies some sort of causality and causality usually doesn't reverse.



            But you asked for intuition. So, I'd think about some examples, because that seems to spark intuition. Choose one you like:



            If a person is a woman, it is more likely that the person voted for a Democrat.

            If a person voted for a Democrat, it is more likely that the person is a woman.



            If a man is a professional basketball center, it is more likely that he is over 2 meters tall.

            If a man is over 2 meters tall, it is more likely that he is a basketball center.



            If it is over 40 degrees Celsius, it is more likely that there will be a blackout.

            If there has been a blackout, it is more likely that it is over 40 degrees.



            And so on.






            share|cite|improve this answer











            $endgroup$



            Well, I don't like the word "makes" in the question. That implies some sort of causality and causality usually doesn't reverse.



            But you asked for intuition. So, I'd think about some examples, because that seems to spark intuition. Choose one you like:



            If a person is a woman, it is more likely that the person voted for a Democrat.

            If a person voted for a Democrat, it is more likely that the person is a woman.



            If a man is a professional basketball center, it is more likely that he is over 2 meters tall.

            If a man is over 2 meters tall, it is more likely that he is a basketball center.



            If it is over 40 degrees Celsius, it is more likely that there will be a blackout.

            If there has been a blackout, it is more likely that it is over 40 degrees.



            And so on.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited yesterday

























            answered yesterday









            Peter FlomPeter Flom

            77.6k12110219




            77.6k12110219







            • 4




              $begingroup$
              That's not about probability. That's about 1 to 1 relationships.
              $endgroup$
              – Peter Flom
              yesterday






            • 6




              $begingroup$
              @jww Imagine the statement "if it is raining, the street is wet" (and suppose that's a valid implication for the moment, while the converse is not). Now take a large number of "samples" in different times and places, where you record whether it's raining and whether the street is wet. The street will be wet in more of the samples where it's raining than the samples where it's not; but also, it will be raining in more of the samples where the street is wet than the samples where the street is dry. That's probability.
              $endgroup$
              – hobbs
              yesterday






            • 3




              $begingroup$
              Both phenomena are caused by the same implication; the implication only works one way, but observing the consequent makes it more likely that you're looking at a sample where the antecedent is true.
              $endgroup$
              – hobbs
              yesterday






            • 6




              $begingroup$
              @Barmar Sorry, but that partly demonstrates the correctness of my logic. Because say 36/25,000 is a whole lot higher than 1/150,000,000.
              $endgroup$
              – Peter Flom
              yesterday






            • 6




              $begingroup$
              More likely than someone who is less than 2 meters tall.
              $endgroup$
              – Peter Flom
              yesterday












            • 4




              $begingroup$
              That's not about probability. That's about 1 to 1 relationships.
              $endgroup$
              – Peter Flom
              yesterday






            • 6




              $begingroup$
              @jww Imagine the statement "if it is raining, the street is wet" (and suppose that's a valid implication for the moment, while the converse is not). Now take a large number of "samples" in different times and places, where you record whether it's raining and whether the street is wet. The street will be wet in more of the samples where it's raining than the samples where it's not; but also, it will be raining in more of the samples where the street is wet than the samples where the street is dry. That's probability.
              $endgroup$
              – hobbs
              yesterday






            • 3




              $begingroup$
              Both phenomena are caused by the same implication; the implication only works one way, but observing the consequent makes it more likely that you're looking at a sample where the antecedent is true.
              $endgroup$
              – hobbs
              yesterday






            • 6




              $begingroup$
              @Barmar Sorry, but that partly demonstrates the correctness of my logic. Because say 36/25,000 is a whole lot higher than 1/150,000,000.
              $endgroup$
              – Peter Flom
              yesterday






            • 6




              $begingroup$
              More likely than someone who is less than 2 meters tall.
              $endgroup$
              – Peter Flom
              yesterday







            4




            4




            $begingroup$
            That's not about probability. That's about 1 to 1 relationships.
            $endgroup$
            – Peter Flom
            yesterday




            $begingroup$
            That's not about probability. That's about 1 to 1 relationships.
            $endgroup$
            – Peter Flom
            yesterday




            6




            6




            $begingroup$
            @jww Imagine the statement "if it is raining, the street is wet" (and suppose that's a valid implication for the moment, while the converse is not). Now take a large number of "samples" in different times and places, where you record whether it's raining and whether the street is wet. The street will be wet in more of the samples where it's raining than the samples where it's not; but also, it will be raining in more of the samples where the street is wet than the samples where the street is dry. That's probability.
            $endgroup$
            – hobbs
            yesterday




            $begingroup$
            @jww Imagine the statement "if it is raining, the street is wet" (and suppose that's a valid implication for the moment, while the converse is not). Now take a large number of "samples" in different times and places, where you record whether it's raining and whether the street is wet. The street will be wet in more of the samples where it's raining than the samples where it's not; but also, it will be raining in more of the samples where the street is wet than the samples where the street is dry. That's probability.
            $endgroup$
            – hobbs
            yesterday




            3




            3




            $begingroup$
            Both phenomena are caused by the same implication; the implication only works one way, but observing the consequent makes it more likely that you're looking at a sample where the antecedent is true.
            $endgroup$
            – hobbs
            yesterday




            $begingroup$
            Both phenomena are caused by the same implication; the implication only works one way, but observing the consequent makes it more likely that you're looking at a sample where the antecedent is true.
            $endgroup$
            – hobbs
            yesterday




            6




            6




            $begingroup$
            @Barmar Sorry, but that partly demonstrates the correctness of my logic. Because say 36/25,000 is a whole lot higher than 1/150,000,000.
            $endgroup$
            – Peter Flom
            yesterday




            $begingroup$
            @Barmar Sorry, but that partly demonstrates the correctness of my logic. Because say 36/25,000 is a whole lot higher than 1/150,000,000.
            $endgroup$
            – Peter Flom
            yesterday




            6




            6




            $begingroup$
            More likely than someone who is less than 2 meters tall.
            $endgroup$
            – Peter Flom
            yesterday




            $begingroup$
            More likely than someone who is less than 2 meters tall.
            $endgroup$
            – Peter Flom
            yesterday











            9












            $begingroup$

            To add on the answer by @Dasherman: What can it mean to say that two events are related, or maybe associated or correlated? Maybe we could for a definition compare the joint probability (Assuming $DeclareMathOperatorPmathbbP P(A)>0, P(B)>0$):
            $$
            eta(A,B)=fracP(A cap B)P(A) P(B)
            $$

            so if $eta$ is larger than one, $A$ and $B$ occurs together more often than under independence. Then we can say that $A$ and $B$ are positively related.



            But now, using the definition of conditional probability, $fracP(A cap B)P(A) P(B)>1$ is an easy consequence of $P(B mid A) > P(B)$. But $fracP(A cap B)P(A) P(B)$ is completely symmetric in $A$ and $B$ (interchanging all occurrences of the symbol $A$ with $B$ and vice versa) leaves the same formulas, so is also equivalent with $P(A mid B) > P(A)$. That gives the result. So the intuition you ask for is that $eta(A,B)$ is symmetric in $A$ and $B$.



            The answer by @gunes gave a practical example, and it is easy to make others the same way.






            share|cite|improve this answer











            $endgroup$

















              9












              $begingroup$

              To add on the answer by @Dasherman: What can it mean to say that two events are related, or maybe associated or correlated? Maybe we could for a definition compare the joint probability (Assuming $DeclareMathOperatorPmathbbP P(A)>0, P(B)>0$):
              $$
              eta(A,B)=fracP(A cap B)P(A) P(B)
              $$

              so if $eta$ is larger than one, $A$ and $B$ occurs together more often than under independence. Then we can say that $A$ and $B$ are positively related.



              But now, using the definition of conditional probability, $fracP(A cap B)P(A) P(B)>1$ is an easy consequence of $P(B mid A) > P(B)$. But $fracP(A cap B)P(A) P(B)$ is completely symmetric in $A$ and $B$ (interchanging all occurrences of the symbol $A$ with $B$ and vice versa) leaves the same formulas, so is also equivalent with $P(A mid B) > P(A)$. That gives the result. So the intuition you ask for is that $eta(A,B)$ is symmetric in $A$ and $B$.



              The answer by @gunes gave a practical example, and it is easy to make others the same way.






              share|cite|improve this answer











              $endgroup$















                9












                9








                9





                $begingroup$

                To add on the answer by @Dasherman: What can it mean to say that two events are related, or maybe associated or correlated? Maybe we could for a definition compare the joint probability (Assuming $DeclareMathOperatorPmathbbP P(A)>0, P(B)>0$):
                $$
                eta(A,B)=fracP(A cap B)P(A) P(B)
                $$

                so if $eta$ is larger than one, $A$ and $B$ occurs together more often than under independence. Then we can say that $A$ and $B$ are positively related.



                But now, using the definition of conditional probability, $fracP(A cap B)P(A) P(B)>1$ is an easy consequence of $P(B mid A) > P(B)$. But $fracP(A cap B)P(A) P(B)$ is completely symmetric in $A$ and $B$ (interchanging all occurrences of the symbol $A$ with $B$ and vice versa) leaves the same formulas, so is also equivalent with $P(A mid B) > P(A)$. That gives the result. So the intuition you ask for is that $eta(A,B)$ is symmetric in $A$ and $B$.



                The answer by @gunes gave a practical example, and it is easy to make others the same way.






                share|cite|improve this answer











                $endgroup$



                To add on the answer by @Dasherman: What can it mean to say that two events are related, or maybe associated or correlated? Maybe we could for a definition compare the joint probability (Assuming $DeclareMathOperatorPmathbbP P(A)>0, P(B)>0$):
                $$
                eta(A,B)=fracP(A cap B)P(A) P(B)
                $$

                so if $eta$ is larger than one, $A$ and $B$ occurs together more often than under independence. Then we can say that $A$ and $B$ are positively related.



                But now, using the definition of conditional probability, $fracP(A cap B)P(A) P(B)>1$ is an easy consequence of $P(B mid A) > P(B)$. But $fracP(A cap B)P(A) P(B)$ is completely symmetric in $A$ and $B$ (interchanging all occurrences of the symbol $A$ with $B$ and vice versa) leaves the same formulas, so is also equivalent with $P(A mid B) > P(A)$. That gives the result. So the intuition you ask for is that $eta(A,B)$ is symmetric in $A$ and $B$.



                The answer by @gunes gave a practical example, and it is easy to make others the same way.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited yesterday

























                answered yesterday









                kjetil b halvorsenkjetil b halvorsen

                32.4k985241




                32.4k985241





















                    8












                    $begingroup$

                    By way of intuition, real world examples such as Peter Flom gives are most helpful for some people. The other thing that commonly helps people is pictures. So, to cover most bases, let's have some pictures.



                    Conditional probability diagram showing independenceConditional probability diagram showing dependence



                    What we have here are two very basic diagrams showing probabilities. The first shows two independent predicates I'll call Red and Plain. It is clear that they are independent because the lines line up. The proportion of plain area that is red is the same as the proportion of stripy area that is red and is also the same as the total proportion that is red.



                    In the second image, we have non-independent distributions. Specifically, we have expanded some of the plain red area into the stripy area without changing the fact that it is red. Clearly then, being red makes being plain more likely.



                    Meanwhile, have a look at the plain side of that image. Clearly the proportion of the plain region that is red is greater than the proportion of the whole image that is red. That is because the plain region has been given a bunch more area and all of it is red.



                    So, red makes plain more likely, and plain makes red more likely.



                    What's actually happening here? A is evidence for B (that is, A makes B more likely) when the area that contains both A and B is bigger than would be predicted if they were independent. Because the intersection between A and B is the same as the intersection between B and A, that also implies that B is evidence for A.



                    One note of caution: although the argument above seems very symmetrical, it may not be the case that the strength of evidence in both directions is equal. For example, consider this third image. Conditional probability diagram showing extreme dependence

                    Here the same thing has happened: plain red has eaten up territory previously belonging to stripy red. In fact, it has completely finished the job!



                    Note that the point being red outright guarantees plainness because there are no stripy red regions left. However a point being plain has not guaranteed redness, because there are still green regions left. Nevertheless, a point in the box being plain increases the chance that it is red, and a point being red increases the chance that it is plain. Both directions imply more likely, just not by the same amount.






                    share|cite|improve this answer










                    New contributor




                    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$












                    • $begingroup$
                      I like the images :) However It looks like either the images or the explanation is flipped: In the second image, we have non-independent distributions. Specifically, we have moved some of the stripy red area into the plain area without changing the fact that it is red. Clearly then, being red makes being plain more likely. -- your second image has gained plain area than the first, so going from image 1 to 2 we have moved plain area into the striped area.
                      $endgroup$
                      – Pod
                      19 hours ago










                    • $begingroup$
                      So, if I have venn diagram with some common A,B intersection area and all I do is increase that intersection area, I automatically add more A,B for the entire space(without making the space larger) and change/increase n(A)/n(S) and n(B)/n(S) as a consequence. Right? More comments?
                      $endgroup$
                      – Rahul Deora
                      18 hours ago















                    8












                    $begingroup$

                    By way of intuition, real world examples such as Peter Flom gives are most helpful for some people. The other thing that commonly helps people is pictures. So, to cover most bases, let's have some pictures.



                    Conditional probability diagram showing independenceConditional probability diagram showing dependence



                    What we have here are two very basic diagrams showing probabilities. The first shows two independent predicates I'll call Red and Plain. It is clear that they are independent because the lines line up. The proportion of plain area that is red is the same as the proportion of stripy area that is red and is also the same as the total proportion that is red.



                    In the second image, we have non-independent distributions. Specifically, we have expanded some of the plain red area into the stripy area without changing the fact that it is red. Clearly then, being red makes being plain more likely.



                    Meanwhile, have a look at the plain side of that image. Clearly the proportion of the plain region that is red is greater than the proportion of the whole image that is red. That is because the plain region has been given a bunch more area and all of it is red.



                    So, red makes plain more likely, and plain makes red more likely.



                    What's actually happening here? A is evidence for B (that is, A makes B more likely) when the area that contains both A and B is bigger than would be predicted if they were independent. Because the intersection between A and B is the same as the intersection between B and A, that also implies that B is evidence for A.



                    One note of caution: although the argument above seems very symmetrical, it may not be the case that the strength of evidence in both directions is equal. For example, consider this third image. Conditional probability diagram showing extreme dependence

                    Here the same thing has happened: plain red has eaten up territory previously belonging to stripy red. In fact, it has completely finished the job!



                    Note that the point being red outright guarantees plainness because there are no stripy red regions left. However a point being plain has not guaranteed redness, because there are still green regions left. Nevertheless, a point in the box being plain increases the chance that it is red, and a point being red increases the chance that it is plain. Both directions imply more likely, just not by the same amount.






                    share|cite|improve this answer










                    New contributor




                    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$












                    • $begingroup$
                      I like the images :) However It looks like either the images or the explanation is flipped: In the second image, we have non-independent distributions. Specifically, we have moved some of the stripy red area into the plain area without changing the fact that it is red. Clearly then, being red makes being plain more likely. -- your second image has gained plain area than the first, so going from image 1 to 2 we have moved plain area into the striped area.
                      $endgroup$
                      – Pod
                      19 hours ago










                    • $begingroup$
                      So, if I have venn diagram with some common A,B intersection area and all I do is increase that intersection area, I automatically add more A,B for the entire space(without making the space larger) and change/increase n(A)/n(S) and n(B)/n(S) as a consequence. Right? More comments?
                      $endgroup$
                      – Rahul Deora
                      18 hours ago













                    8












                    8








                    8





                    $begingroup$

                    By way of intuition, real world examples such as Peter Flom gives are most helpful for some people. The other thing that commonly helps people is pictures. So, to cover most bases, let's have some pictures.



                    Conditional probability diagram showing independenceConditional probability diagram showing dependence



                    What we have here are two very basic diagrams showing probabilities. The first shows two independent predicates I'll call Red and Plain. It is clear that they are independent because the lines line up. The proportion of plain area that is red is the same as the proportion of stripy area that is red and is also the same as the total proportion that is red.



                    In the second image, we have non-independent distributions. Specifically, we have expanded some of the plain red area into the stripy area without changing the fact that it is red. Clearly then, being red makes being plain more likely.



                    Meanwhile, have a look at the plain side of that image. Clearly the proportion of the plain region that is red is greater than the proportion of the whole image that is red. That is because the plain region has been given a bunch more area and all of it is red.



                    So, red makes plain more likely, and plain makes red more likely.



                    What's actually happening here? A is evidence for B (that is, A makes B more likely) when the area that contains both A and B is bigger than would be predicted if they were independent. Because the intersection between A and B is the same as the intersection between B and A, that also implies that B is evidence for A.



                    One note of caution: although the argument above seems very symmetrical, it may not be the case that the strength of evidence in both directions is equal. For example, consider this third image. Conditional probability diagram showing extreme dependence

                    Here the same thing has happened: plain red has eaten up territory previously belonging to stripy red. In fact, it has completely finished the job!



                    Note that the point being red outright guarantees plainness because there are no stripy red regions left. However a point being plain has not guaranteed redness, because there are still green regions left. Nevertheless, a point in the box being plain increases the chance that it is red, and a point being red increases the chance that it is plain. Both directions imply more likely, just not by the same amount.






                    share|cite|improve this answer










                    New contributor




                    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$



                    By way of intuition, real world examples such as Peter Flom gives are most helpful for some people. The other thing that commonly helps people is pictures. So, to cover most bases, let's have some pictures.



                    Conditional probability diagram showing independenceConditional probability diagram showing dependence



                    What we have here are two very basic diagrams showing probabilities. The first shows two independent predicates I'll call Red and Plain. It is clear that they are independent because the lines line up. The proportion of plain area that is red is the same as the proportion of stripy area that is red and is also the same as the total proportion that is red.



                    In the second image, we have non-independent distributions. Specifically, we have expanded some of the plain red area into the stripy area without changing the fact that it is red. Clearly then, being red makes being plain more likely.



                    Meanwhile, have a look at the plain side of that image. Clearly the proportion of the plain region that is red is greater than the proportion of the whole image that is red. That is because the plain region has been given a bunch more area and all of it is red.



                    So, red makes plain more likely, and plain makes red more likely.



                    What's actually happening here? A is evidence for B (that is, A makes B more likely) when the area that contains both A and B is bigger than would be predicted if they were independent. Because the intersection between A and B is the same as the intersection between B and A, that also implies that B is evidence for A.



                    One note of caution: although the argument above seems very symmetrical, it may not be the case that the strength of evidence in both directions is equal. For example, consider this third image. Conditional probability diagram showing extreme dependence

                    Here the same thing has happened: plain red has eaten up territory previously belonging to stripy red. In fact, it has completely finished the job!



                    Note that the point being red outright guarantees plainness because there are no stripy red regions left. However a point being plain has not guaranteed redness, because there are still green regions left. Nevertheless, a point in the box being plain increases the chance that it is red, and a point being red increases the chance that it is plain. Both directions imply more likely, just not by the same amount.







                    share|cite|improve this answer










                    New contributor




                    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 17 hours ago





















                    New contributor




                    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    answered yesterday









                    JosiahJosiah

                    1813




                    1813




                    New contributor




                    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





                    New contributor





                    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    Josiah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.











                    • $begingroup$
                      I like the images :) However It looks like either the images or the explanation is flipped: In the second image, we have non-independent distributions. Specifically, we have moved some of the stripy red area into the plain area without changing the fact that it is red. Clearly then, being red makes being plain more likely. -- your second image has gained plain area than the first, so going from image 1 to 2 we have moved plain area into the striped area.
                      $endgroup$
                      – Pod
                      19 hours ago










                    • $begingroup$
                      So, if I have venn diagram with some common A,B intersection area and all I do is increase that intersection area, I automatically add more A,B for the entire space(without making the space larger) and change/increase n(A)/n(S) and n(B)/n(S) as a consequence. Right? More comments?
                      $endgroup$
                      – Rahul Deora
                      18 hours ago
















                    • $begingroup$
                      I like the images :) However It looks like either the images or the explanation is flipped: In the second image, we have non-independent distributions. Specifically, we have moved some of the stripy red area into the plain area without changing the fact that it is red. Clearly then, being red makes being plain more likely. -- your second image has gained plain area than the first, so going from image 1 to 2 we have moved plain area into the striped area.
                      $endgroup$
                      – Pod
                      19 hours ago










                    • $begingroup$
                      So, if I have venn diagram with some common A,B intersection area and all I do is increase that intersection area, I automatically add more A,B for the entire space(without making the space larger) and change/increase n(A)/n(S) and n(B)/n(S) as a consequence. Right? More comments?
                      $endgroup$
                      – Rahul Deora
                      18 hours ago















                    $begingroup$
                    I like the images :) However It looks like either the images or the explanation is flipped: In the second image, we have non-independent distributions. Specifically, we have moved some of the stripy red area into the plain area without changing the fact that it is red. Clearly then, being red makes being plain more likely. -- your second image has gained plain area than the first, so going from image 1 to 2 we have moved plain area into the striped area.
                    $endgroup$
                    – Pod
                    19 hours ago




                    $begingroup$
                    I like the images :) However It looks like either the images or the explanation is flipped: In the second image, we have non-independent distributions. Specifically, we have moved some of the stripy red area into the plain area without changing the fact that it is red. Clearly then, being red makes being plain more likely. -- your second image has gained plain area than the first, so going from image 1 to 2 we have moved plain area into the striped area.
                    $endgroup$
                    – Pod
                    19 hours ago












                    $begingroup$
                    So, if I have venn diagram with some common A,B intersection area and all I do is increase that intersection area, I automatically add more A,B for the entire space(without making the space larger) and change/increase n(A)/n(S) and n(B)/n(S) as a consequence. Right? More comments?
                    $endgroup$
                    – Rahul Deora
                    18 hours ago




                    $begingroup$
                    So, if I have venn diagram with some common A,B intersection area and all I do is increase that intersection area, I automatically add more A,B for the entire space(without making the space larger) and change/increase n(A)/n(S) and n(B)/n(S) as a consequence. Right? More comments?
                    $endgroup$
                    – Rahul Deora
                    18 hours ago











                    2












                    $begingroup$

                    If A makes B more likely, this means the events are somehow related. This relation works both ways.



                    If A makes B more likely, this means that A and B tend to happen together. This then means that B also makes A more likely.






                    share|cite|improve this answer











                    $endgroup$








                    • 1




                      $begingroup$
                      This perhaps could use some expansion? Without a definition of related it is a bit empty.
                      $endgroup$
                      – mdewey
                      yesterday






                    • 2




                      $begingroup$
                      I was trying to stay away from anything rigorous, since OP asked for an intuitive explanation. You are right that it is quite empty as it is now, but I'm not sure how to expand it in an intuitive way. I have added an attempt.
                      $endgroup$
                      – Dasherman
                      yesterday
















                    2












                    $begingroup$

                    If A makes B more likely, this means the events are somehow related. This relation works both ways.



                    If A makes B more likely, this means that A and B tend to happen together. This then means that B also makes A more likely.






                    share|cite|improve this answer











                    $endgroup$








                    • 1




                      $begingroup$
                      This perhaps could use some expansion? Without a definition of related it is a bit empty.
                      $endgroup$
                      – mdewey
                      yesterday






                    • 2




                      $begingroup$
                      I was trying to stay away from anything rigorous, since OP asked for an intuitive explanation. You are right that it is quite empty as it is now, but I'm not sure how to expand it in an intuitive way. I have added an attempt.
                      $endgroup$
                      – Dasherman
                      yesterday














                    2












                    2








                    2





                    $begingroup$

                    If A makes B more likely, this means the events are somehow related. This relation works both ways.



                    If A makes B more likely, this means that A and B tend to happen together. This then means that B also makes A more likely.






                    share|cite|improve this answer











                    $endgroup$



                    If A makes B more likely, this means the events are somehow related. This relation works both ways.



                    If A makes B more likely, this means that A and B tend to happen together. This then means that B also makes A more likely.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited yesterday

























                    answered yesterday









                    DashermanDasherman

                    20116




                    20116







                    • 1




                      $begingroup$
                      This perhaps could use some expansion? Without a definition of related it is a bit empty.
                      $endgroup$
                      – mdewey
                      yesterday






                    • 2




                      $begingroup$
                      I was trying to stay away from anything rigorous, since OP asked for an intuitive explanation. You are right that it is quite empty as it is now, but I'm not sure how to expand it in an intuitive way. I have added an attempt.
                      $endgroup$
                      – Dasherman
                      yesterday













                    • 1




                      $begingroup$
                      This perhaps could use some expansion? Without a definition of related it is a bit empty.
                      $endgroup$
                      – mdewey
                      yesterday






                    • 2




                      $begingroup$
                      I was trying to stay away from anything rigorous, since OP asked for an intuitive explanation. You are right that it is quite empty as it is now, but I'm not sure how to expand it in an intuitive way. I have added an attempt.
                      $endgroup$
                      – Dasherman
                      yesterday








                    1




                    1




                    $begingroup$
                    This perhaps could use some expansion? Without a definition of related it is a bit empty.
                    $endgroup$
                    – mdewey
                    yesterday




                    $begingroup$
                    This perhaps could use some expansion? Without a definition of related it is a bit empty.
                    $endgroup$
                    – mdewey
                    yesterday




                    2




                    2




                    $begingroup$
                    I was trying to stay away from anything rigorous, since OP asked for an intuitive explanation. You are right that it is quite empty as it is now, but I'm not sure how to expand it in an intuitive way. I have added an attempt.
                    $endgroup$
                    – Dasherman
                    yesterday





                    $begingroup$
                    I was trying to stay away from anything rigorous, since OP asked for an intuitive explanation. You are right that it is quite empty as it is now, but I'm not sure how to expand it in an intuitive way. I have added an attempt.
                    $endgroup$
                    – Dasherman
                    yesterday












                    2












                    $begingroup$

                    If A makes B more likely, A has crucial information that B can infer about itself. Despite the fact that it might not contribute the same amount, that information is not lost the other way around. Eventually, we have two events that their occurrence support each other. I can’t seem to imagine a scenario where occurrence of A increases the likelihood of B, and occurrence of B decreases the likelihood of A. For example, if it rains, the floor will be wet with high probability, and if the floor is wet, it doesn’t mean that it rained but it doesn’t decrease the chances.






                    share|cite|improve this answer











                    $endgroup$

















                      2












                      $begingroup$

                      If A makes B more likely, A has crucial information that B can infer about itself. Despite the fact that it might not contribute the same amount, that information is not lost the other way around. Eventually, we have two events that their occurrence support each other. I can’t seem to imagine a scenario where occurrence of A increases the likelihood of B, and occurrence of B decreases the likelihood of A. For example, if it rains, the floor will be wet with high probability, and if the floor is wet, it doesn’t mean that it rained but it doesn’t decrease the chances.






                      share|cite|improve this answer











                      $endgroup$















                        2












                        2








                        2





                        $begingroup$

                        If A makes B more likely, A has crucial information that B can infer about itself. Despite the fact that it might not contribute the same amount, that information is not lost the other way around. Eventually, we have two events that their occurrence support each other. I can’t seem to imagine a scenario where occurrence of A increases the likelihood of B, and occurrence of B decreases the likelihood of A. For example, if it rains, the floor will be wet with high probability, and if the floor is wet, it doesn’t mean that it rained but it doesn’t decrease the chances.






                        share|cite|improve this answer











                        $endgroup$



                        If A makes B more likely, A has crucial information that B can infer about itself. Despite the fact that it might not contribute the same amount, that information is not lost the other way around. Eventually, we have two events that their occurrence support each other. I can’t seem to imagine a scenario where occurrence of A increases the likelihood of B, and occurrence of B decreases the likelihood of A. For example, if it rains, the floor will be wet with high probability, and if the floor is wet, it doesn’t mean that it rained but it doesn’t decrease the chances.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited yesterday

























                        answered yesterday









                        gunesgunes

                        7,5911316




                        7,5911316





















                            2












                            $begingroup$

                            You can make the math more intuitive by imagining a contingency table.



                            $beginarraycc
                            beginarraycc
                            && A & lnot A & \
                            &a+b+c+d & a+c & b+d \hline
                            B& a+b& a & b \
                            lnot B & c+d& c & d \
                            endarray
                            endarray$



                            • When $A$ and $B$ are independent then the joint probabilities are products of the marginal probabilities $$beginarraycc
                              beginarraycc
                              && A & lnot A & \
                              &1 & x & 1-x \hline
                              B& y& a=xy & b=(1-x)y \
                              lnot B & 1-y& c=x (1-y) & d=(1-x)(1-y)\
                              endarray
                              endarray$$
                              In such case you would have similar marginal and conditional probabilities, e.g. $P (A) = P (A|B) $ and $P (B)=P (B|A) $.



                            • When there is no independence then you could see this as leaving the parameters $a,b,c,d $ the same (as products of the margins) but with just an adjustment by $pm z $ $$beginarraycc
                              beginarraycc
                              && A & lnot A & \
                              &1 & x & 1-x \hline
                              B& y& a+z & b-z \
                              lnot B & 1-y& c-z & d+z\
                              endarray
                              endarray$$



                              You could see this $z$ as breaking the equality of the marginal and conditional probabilities or breaking the relationship for the joint probabilities being products of the marginal probabilities.



                              Now, from this point of view (of breaking these equalities) you can see that this breaking happens in two ways both for $P(A|B) neq P(A)$ and $P(B|A) neq P(B)$. And the inequality will be for both cases $>$ when $z$ is positive and $<$ when $z $ is negative.



                            So you could see the connection $P(A|B) > P(A)$ then $P(B|A) > P(B)$ via the joint probability $P(B,A) > P (A) P (B) $.



                            If A and B often happen together (joint probability is higher then product of marginal probabilities) then observing the one will make the (conditional) probability of the other higher.






                            share|cite|improve this answer











                            $endgroup$

















                              2












                              $begingroup$

                              You can make the math more intuitive by imagining a contingency table.



                              $beginarraycc
                              beginarraycc
                              && A & lnot A & \
                              &a+b+c+d & a+c & b+d \hline
                              B& a+b& a & b \
                              lnot B & c+d& c & d \
                              endarray
                              endarray$



                              • When $A$ and $B$ are independent then the joint probabilities are products of the marginal probabilities $$beginarraycc
                                beginarraycc
                                && A & lnot A & \
                                &1 & x & 1-x \hline
                                B& y& a=xy & b=(1-x)y \
                                lnot B & 1-y& c=x (1-y) & d=(1-x)(1-y)\
                                endarray
                                endarray$$
                                In such case you would have similar marginal and conditional probabilities, e.g. $P (A) = P (A|B) $ and $P (B)=P (B|A) $.



                              • When there is no independence then you could see this as leaving the parameters $a,b,c,d $ the same (as products of the margins) but with just an adjustment by $pm z $ $$beginarraycc
                                beginarraycc
                                && A & lnot A & \
                                &1 & x & 1-x \hline
                                B& y& a+z & b-z \
                                lnot B & 1-y& c-z & d+z\
                                endarray
                                endarray$$



                                You could see this $z$ as breaking the equality of the marginal and conditional probabilities or breaking the relationship for the joint probabilities being products of the marginal probabilities.



                                Now, from this point of view (of breaking these equalities) you can see that this breaking happens in two ways both for $P(A|B) neq P(A)$ and $P(B|A) neq P(B)$. And the inequality will be for both cases $>$ when $z$ is positive and $<$ when $z $ is negative.



                              So you could see the connection $P(A|B) > P(A)$ then $P(B|A) > P(B)$ via the joint probability $P(B,A) > P (A) P (B) $.



                              If A and B often happen together (joint probability is higher then product of marginal probabilities) then observing the one will make the (conditional) probability of the other higher.






                              share|cite|improve this answer











                              $endgroup$















                                2












                                2








                                2





                                $begingroup$

                                You can make the math more intuitive by imagining a contingency table.



                                $beginarraycc
                                beginarraycc
                                && A & lnot A & \
                                &a+b+c+d & a+c & b+d \hline
                                B& a+b& a & b \
                                lnot B & c+d& c & d \
                                endarray
                                endarray$



                                • When $A$ and $B$ are independent then the joint probabilities are products of the marginal probabilities $$beginarraycc
                                  beginarraycc
                                  && A & lnot A & \
                                  &1 & x & 1-x \hline
                                  B& y& a=xy & b=(1-x)y \
                                  lnot B & 1-y& c=x (1-y) & d=(1-x)(1-y)\
                                  endarray
                                  endarray$$
                                  In such case you would have similar marginal and conditional probabilities, e.g. $P (A) = P (A|B) $ and $P (B)=P (B|A) $.



                                • When there is no independence then you could see this as leaving the parameters $a,b,c,d $ the same (as products of the margins) but with just an adjustment by $pm z $ $$beginarraycc
                                  beginarraycc
                                  && A & lnot A & \
                                  &1 & x & 1-x \hline
                                  B& y& a+z & b-z \
                                  lnot B & 1-y& c-z & d+z\
                                  endarray
                                  endarray$$



                                  You could see this $z$ as breaking the equality of the marginal and conditional probabilities or breaking the relationship for the joint probabilities being products of the marginal probabilities.



                                  Now, from this point of view (of breaking these equalities) you can see that this breaking happens in two ways both for $P(A|B) neq P(A)$ and $P(B|A) neq P(B)$. And the inequality will be for both cases $>$ when $z$ is positive and $<$ when $z $ is negative.



                                So you could see the connection $P(A|B) > P(A)$ then $P(B|A) > P(B)$ via the joint probability $P(B,A) > P (A) P (B) $.



                                If A and B often happen together (joint probability is higher then product of marginal probabilities) then observing the one will make the (conditional) probability of the other higher.






                                share|cite|improve this answer











                                $endgroup$



                                You can make the math more intuitive by imagining a contingency table.



                                $beginarraycc
                                beginarraycc
                                && A & lnot A & \
                                &a+b+c+d & a+c & b+d \hline
                                B& a+b& a & b \
                                lnot B & c+d& c & d \
                                endarray
                                endarray$



                                • When $A$ and $B$ are independent then the joint probabilities are products of the marginal probabilities $$beginarraycc
                                  beginarraycc
                                  && A & lnot A & \
                                  &1 & x & 1-x \hline
                                  B& y& a=xy & b=(1-x)y \
                                  lnot B & 1-y& c=x (1-y) & d=(1-x)(1-y)\
                                  endarray
                                  endarray$$
                                  In such case you would have similar marginal and conditional probabilities, e.g. $P (A) = P (A|B) $ and $P (B)=P (B|A) $.



                                • When there is no independence then you could see this as leaving the parameters $a,b,c,d $ the same (as products of the margins) but with just an adjustment by $pm z $ $$beginarraycc
                                  beginarraycc
                                  && A & lnot A & \
                                  &1 & x & 1-x \hline
                                  B& y& a+z & b-z \
                                  lnot B & 1-y& c-z & d+z\
                                  endarray
                                  endarray$$



                                  You could see this $z$ as breaking the equality of the marginal and conditional probabilities or breaking the relationship for the joint probabilities being products of the marginal probabilities.



                                  Now, from this point of view (of breaking these equalities) you can see that this breaking happens in two ways both for $P(A|B) neq P(A)$ and $P(B|A) neq P(B)$. And the inequality will be for both cases $>$ when $z$ is positive and $<$ when $z $ is negative.



                                So you could see the connection $P(A|B) > P(A)$ then $P(B|A) > P(B)$ via the joint probability $P(B,A) > P (A) P (B) $.



                                If A and B often happen together (joint probability is higher then product of marginal probabilities) then observing the one will make the (conditional) probability of the other higher.







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited yesterday

























                                answered yesterday









                                Martijn WeteringsMartijn Weterings

                                14.8k2064




                                14.8k2064





















                                    2












                                    $begingroup$

                                    Suppose we denote the posterior-to-prior probability ratio of an event as:



                                    $$Delta(A|B) equiv fracmathbbP(AmathbbP(A)$$



                                    Then an alternative expression of Bayes' theorem (see this related post) is:



                                    $$Delta(A|B)
                                    = fracmathbbP(AmathbbP(A)
                                    = fracmathbbP(A cap B)mathbbP(A) mathbbP(B)
                                    = fracA)mathbbP(B)
                                    = Delta(B|A).$$



                                    The posterior-to-prior probability ratio tells us whether the argument event is made more or less likely by the occurrence of the conditioning event (and how much more or less likely). The above form of Bayes' theorem shows use that posterior-to-prior probability ratio is symmetric in the variables.$^dagger$ For example, if observing $B$ makes $A$ more likely than it was a priori, then observing $A$ makes $B$ more likely than it was a priori.




                                    $^dagger$ Note that this is a probability rule, and so it should not be interpreted causally. This symmetry is true in a probabilistic sense for passive observation ---however, it is not true if you intervene in the system to change $A$ or $B$. In that latter case you would need to use causal operations (e.g., the $textdo$ operator) to find the effect of the change in the conditioning variable.






                                    share|cite|improve this answer









                                    $endgroup$

















                                      2












                                      $begingroup$

                                      Suppose we denote the posterior-to-prior probability ratio of an event as:



                                      $$Delta(A|B) equiv fracmathbbP(AmathbbP(A)$$



                                      Then an alternative expression of Bayes' theorem (see this related post) is:



                                      $$Delta(A|B)
                                      = fracmathbbP(AmathbbP(A)
                                      = fracmathbbP(A cap B)mathbbP(A) mathbbP(B)
                                      = fracA)mathbbP(B)
                                      = Delta(B|A).$$



                                      The posterior-to-prior probability ratio tells us whether the argument event is made more or less likely by the occurrence of the conditioning event (and how much more or less likely). The above form of Bayes' theorem shows use that posterior-to-prior probability ratio is symmetric in the variables.$^dagger$ For example, if observing $B$ makes $A$ more likely than it was a priori, then observing $A$ makes $B$ more likely than it was a priori.




                                      $^dagger$ Note that this is a probability rule, and so it should not be interpreted causally. This symmetry is true in a probabilistic sense for passive observation ---however, it is not true if you intervene in the system to change $A$ or $B$. In that latter case you would need to use causal operations (e.g., the $textdo$ operator) to find the effect of the change in the conditioning variable.






                                      share|cite|improve this answer









                                      $endgroup$















                                        2












                                        2








                                        2





                                        $begingroup$

                                        Suppose we denote the posterior-to-prior probability ratio of an event as:



                                        $$Delta(A|B) equiv fracmathbbP(AmathbbP(A)$$



                                        Then an alternative expression of Bayes' theorem (see this related post) is:



                                        $$Delta(A|B)
                                        = fracmathbbP(AmathbbP(A)
                                        = fracmathbbP(A cap B)mathbbP(A) mathbbP(B)
                                        = fracA)mathbbP(B)
                                        = Delta(B|A).$$



                                        The posterior-to-prior probability ratio tells us whether the argument event is made more or less likely by the occurrence of the conditioning event (and how much more or less likely). The above form of Bayes' theorem shows use that posterior-to-prior probability ratio is symmetric in the variables.$^dagger$ For example, if observing $B$ makes $A$ more likely than it was a priori, then observing $A$ makes $B$ more likely than it was a priori.




                                        $^dagger$ Note that this is a probability rule, and so it should not be interpreted causally. This symmetry is true in a probabilistic sense for passive observation ---however, it is not true if you intervene in the system to change $A$ or $B$. In that latter case you would need to use causal operations (e.g., the $textdo$ operator) to find the effect of the change in the conditioning variable.






                                        share|cite|improve this answer









                                        $endgroup$



                                        Suppose we denote the posterior-to-prior probability ratio of an event as:



                                        $$Delta(A|B) equiv fracmathbbP(AmathbbP(A)$$



                                        Then an alternative expression of Bayes' theorem (see this related post) is:



                                        $$Delta(A|B)
                                        = fracmathbbP(AmathbbP(A)
                                        = fracmathbbP(A cap B)mathbbP(A) mathbbP(B)
                                        = fracA)mathbbP(B)
                                        = Delta(B|A).$$



                                        The posterior-to-prior probability ratio tells us whether the argument event is made more or less likely by the occurrence of the conditioning event (and how much more or less likely). The above form of Bayes' theorem shows use that posterior-to-prior probability ratio is symmetric in the variables.$^dagger$ For example, if observing $B$ makes $A$ more likely than it was a priori, then observing $A$ makes $B$ more likely than it was a priori.




                                        $^dagger$ Note that this is a probability rule, and so it should not be interpreted causally. This symmetry is true in a probabilistic sense for passive observation ---however, it is not true if you intervene in the system to change $A$ or $B$. In that latter case you would need to use causal operations (e.g., the $textdo$ operator) to find the effect of the change in the conditioning variable.







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered yesterday









                                        BenBen

                                        28.4k233129




                                        28.4k233129





















                                            1












                                            $begingroup$

                                            You are told that Sam is a woman and Kim is a man, and one of the two wears make-up and the other does not. Who of them would you guess wears make-up?



                                            You are told that Sam wears make-up and Kim doesn't, and one of the two is a man and one is a woman. Who would you guess is the woman?






                                            share|cite|improve this answer









                                            $endgroup$












                                            • $begingroup$
                                              It is not so straightforward to connect this to the original problem. What exactly is event A and what is event B? Here it seems more like some comparison of probabilities. Event A is 'x is a women' (not A is the event 'x is a man'). And event B is 'x wears makeup'. But now we suddenly have a Sam and a Kim, where does that come from and should we use anything of information about the subjective masculinity or femininity of their names?
                                              $endgroup$
                                              – Martijn Weterings
                                              yesterday
















                                            1












                                            $begingroup$

                                            You are told that Sam is a woman and Kim is a man, and one of the two wears make-up and the other does not. Who of them would you guess wears make-up?



                                            You are told that Sam wears make-up and Kim doesn't, and one of the two is a man and one is a woman. Who would you guess is the woman?






                                            share|cite|improve this answer









                                            $endgroup$












                                            • $begingroup$
                                              It is not so straightforward to connect this to the original problem. What exactly is event A and what is event B? Here it seems more like some comparison of probabilities. Event A is 'x is a women' (not A is the event 'x is a man'). And event B is 'x wears makeup'. But now we suddenly have a Sam and a Kim, where does that come from and should we use anything of information about the subjective masculinity or femininity of their names?
                                              $endgroup$
                                              – Martijn Weterings
                                              yesterday














                                            1












                                            1








                                            1





                                            $begingroup$

                                            You are told that Sam is a woman and Kim is a man, and one of the two wears make-up and the other does not. Who of them would you guess wears make-up?



                                            You are told that Sam wears make-up and Kim doesn't, and one of the two is a man and one is a woman. Who would you guess is the woman?






                                            share|cite|improve this answer









                                            $endgroup$



                                            You are told that Sam is a woman and Kim is a man, and one of the two wears make-up and the other does not. Who of them would you guess wears make-up?



                                            You are told that Sam wears make-up and Kim doesn't, and one of the two is a man and one is a woman. Who would you guess is the woman?







                                            share|cite|improve this answer












                                            share|cite|improve this answer



                                            share|cite|improve this answer










                                            answered yesterday









                                            Hagen von EitzenHagen von Eitzen

                                            1413




                                            1413











                                            • $begingroup$
                                              It is not so straightforward to connect this to the original problem. What exactly is event A and what is event B? Here it seems more like some comparison of probabilities. Event A is 'x is a women' (not A is the event 'x is a man'). And event B is 'x wears makeup'. But now we suddenly have a Sam and a Kim, where does that come from and should we use anything of information about the subjective masculinity or femininity of their names?
                                              $endgroup$
                                              – Martijn Weterings
                                              yesterday

















                                            • $begingroup$
                                              It is not so straightforward to connect this to the original problem. What exactly is event A and what is event B? Here it seems more like some comparison of probabilities. Event A is 'x is a women' (not A is the event 'x is a man'). And event B is 'x wears makeup'. But now we suddenly have a Sam and a Kim, where does that come from and should we use anything of information about the subjective masculinity or femininity of their names?
                                              $endgroup$
                                              – Martijn Weterings
                                              yesterday
















                                            $begingroup$
                                            It is not so straightforward to connect this to the original problem. What exactly is event A and what is event B? Here it seems more like some comparison of probabilities. Event A is 'x is a women' (not A is the event 'x is a man'). And event B is 'x wears makeup'. But now we suddenly have a Sam and a Kim, where does that come from and should we use anything of information about the subjective masculinity or femininity of their names?
                                            $endgroup$
                                            – Martijn Weterings
                                            yesterday





                                            $begingroup$
                                            It is not so straightforward to connect this to the original problem. What exactly is event A and what is event B? Here it seems more like some comparison of probabilities. Event A is 'x is a women' (not A is the event 'x is a man'). And event B is 'x wears makeup'. But now we suddenly have a Sam and a Kim, where does that come from and should we use anything of information about the subjective masculinity or femininity of their names?
                                            $endgroup$
                                            – Martijn Weterings
                                            yesterday












                                            1












                                            $begingroup$

                                            It seems there is some confusion between causation and correlation. Indeed, the question statement is false for causation, as can be seen by an example such as:



                                            • If a dog is wearing a scarf, then it is a domesticated animal.

                                            The following is not true:



                                            • Seeing a domesticated animal wearing a scarf implies it is a dog.

                                            • Seeing a domesticated dog implies it is wearing a scarf.

                                            However, if you are thinking of probabilities (correlation) then it IS true:



                                            • Dogs wearing scarfs are much more likely to be a domesticated animal than dogs not wearing scarfs (or animals in general for that matter)

                                            The following is true:



                                            • A domesticated animal wearing a scarf is more likely to be a dog than another animal.

                                            • A domesticated dog is more likely to be wearing a scarf than a non-domesticated dog.

                                            If this is not intuitive, think of a pool of animals including ants, dogs and cats. Dogs and cats can both be domesticated and wear scarfs, ants can't neither.



                                            1. If you increase the probability of domesticated animals in your pool, it also will mean you will increase the chance of seeing an animal wearing a scarf.

                                            2. If you increase the probability of either cats or dogs, then you will also increase the probability of seeing an animal wearing a scarf.

                                            Being domesticated is the "secret" link between the animal and wearing a scarf, and that "secret" link will exert its influence both ways.



                                            Edit: Giving an example to your question in the comments:



                                            Imagine a world where animals are either Cats or Dogs. They can be either domesticated or not. They can wear a scarf or not. Imagine there exist 100 total animals, 50 Dogs and 50 Cats.



                                            Now consider the statement A to be: "Dogs wearing scarfs are thrice as likely to be a domesticated animal than dogs not wearing scarfs".



                                            If A is not true, then you can imagine that the world could be made of 50 Dogs, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs). Same stats for cats.



                                            Then, if you saw a domesticated animal in this world, it would have 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) and 40% chance of having a scarf (20/50, 10 Dogs and 10 Cats out of 50 domesticated animals).



                                            However, if A is true, then you have a world where there are 50 Dogs, 25 of them domesticated (of which 15 wear scarfs), 25 of them wild (of which 5 wear scarfs). Cats maintain the old stats: 50 Cats, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs).



                                            Then, if you saw a domesticated animal in this world, it would have the same 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) but would have 50% (25/50, 15 Dogs and 10 Cats out of 50 domesticated animals).



                                            As you can see, if you say that A is true, then if you saw a domesticated animal wearing a scarf in the world, it would be more likely a Dog (60% or 15/25) than any other animal (in this case Cat, 40% or 10/25).






                                            share|cite|improve this answer










                                            New contributor




                                            H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.






                                            $endgroup$












                                            • $begingroup$
                                              This is the line I have a problem with "A domesticated animal wearing a scarf is more likely to be a dog than another animal." When we made our initial statement we did not make any claim on the other animals that could wear scarfs. There could be 100s. We only made a statement about dogs.
                                              $endgroup$
                                              – Rahul Deora
                                              18 hours ago











                                            • $begingroup$
                                              See if my edit helps with your particular issue.
                                              $endgroup$
                                              – H4uZ
                                              17 hours ago















                                            1












                                            $begingroup$

                                            It seems there is some confusion between causation and correlation. Indeed, the question statement is false for causation, as can be seen by an example such as:



                                            • If a dog is wearing a scarf, then it is a domesticated animal.

                                            The following is not true:



                                            • Seeing a domesticated animal wearing a scarf implies it is a dog.

                                            • Seeing a domesticated dog implies it is wearing a scarf.

                                            However, if you are thinking of probabilities (correlation) then it IS true:



                                            • Dogs wearing scarfs are much more likely to be a domesticated animal than dogs not wearing scarfs (or animals in general for that matter)

                                            The following is true:



                                            • A domesticated animal wearing a scarf is more likely to be a dog than another animal.

                                            • A domesticated dog is more likely to be wearing a scarf than a non-domesticated dog.

                                            If this is not intuitive, think of a pool of animals including ants, dogs and cats. Dogs and cats can both be domesticated and wear scarfs, ants can't neither.



                                            1. If you increase the probability of domesticated animals in your pool, it also will mean you will increase the chance of seeing an animal wearing a scarf.

                                            2. If you increase the probability of either cats or dogs, then you will also increase the probability of seeing an animal wearing a scarf.

                                            Being domesticated is the "secret" link between the animal and wearing a scarf, and that "secret" link will exert its influence both ways.



                                            Edit: Giving an example to your question in the comments:



                                            Imagine a world where animals are either Cats or Dogs. They can be either domesticated or not. They can wear a scarf or not. Imagine there exist 100 total animals, 50 Dogs and 50 Cats.



                                            Now consider the statement A to be: "Dogs wearing scarfs are thrice as likely to be a domesticated animal than dogs not wearing scarfs".



                                            If A is not true, then you can imagine that the world could be made of 50 Dogs, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs). Same stats for cats.



                                            Then, if you saw a domesticated animal in this world, it would have 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) and 40% chance of having a scarf (20/50, 10 Dogs and 10 Cats out of 50 domesticated animals).



                                            However, if A is true, then you have a world where there are 50 Dogs, 25 of them domesticated (of which 15 wear scarfs), 25 of them wild (of which 5 wear scarfs). Cats maintain the old stats: 50 Cats, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs).



                                            Then, if you saw a domesticated animal in this world, it would have the same 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) but would have 50% (25/50, 15 Dogs and 10 Cats out of 50 domesticated animals).



                                            As you can see, if you say that A is true, then if you saw a domesticated animal wearing a scarf in the world, it would be more likely a Dog (60% or 15/25) than any other animal (in this case Cat, 40% or 10/25).






                                            share|cite|improve this answer










                                            New contributor




                                            H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.






                                            $endgroup$












                                            • $begingroup$
                                              This is the line I have a problem with "A domesticated animal wearing a scarf is more likely to be a dog than another animal." When we made our initial statement we did not make any claim on the other animals that could wear scarfs. There could be 100s. We only made a statement about dogs.
                                              $endgroup$
                                              – Rahul Deora
                                              18 hours ago











                                            • $begingroup$
                                              See if my edit helps with your particular issue.
                                              $endgroup$
                                              – H4uZ
                                              17 hours ago













                                            1












                                            1








                                            1





                                            $begingroup$

                                            It seems there is some confusion between causation and correlation. Indeed, the question statement is false for causation, as can be seen by an example such as:



                                            • If a dog is wearing a scarf, then it is a domesticated animal.

                                            The following is not true:



                                            • Seeing a domesticated animal wearing a scarf implies it is a dog.

                                            • Seeing a domesticated dog implies it is wearing a scarf.

                                            However, if you are thinking of probabilities (correlation) then it IS true:



                                            • Dogs wearing scarfs are much more likely to be a domesticated animal than dogs not wearing scarfs (or animals in general for that matter)

                                            The following is true:



                                            • A domesticated animal wearing a scarf is more likely to be a dog than another animal.

                                            • A domesticated dog is more likely to be wearing a scarf than a non-domesticated dog.

                                            If this is not intuitive, think of a pool of animals including ants, dogs and cats. Dogs and cats can both be domesticated and wear scarfs, ants can't neither.



                                            1. If you increase the probability of domesticated animals in your pool, it also will mean you will increase the chance of seeing an animal wearing a scarf.

                                            2. If you increase the probability of either cats or dogs, then you will also increase the probability of seeing an animal wearing a scarf.

                                            Being domesticated is the "secret" link between the animal and wearing a scarf, and that "secret" link will exert its influence both ways.



                                            Edit: Giving an example to your question in the comments:



                                            Imagine a world where animals are either Cats or Dogs. They can be either domesticated or not. They can wear a scarf or not. Imagine there exist 100 total animals, 50 Dogs and 50 Cats.



                                            Now consider the statement A to be: "Dogs wearing scarfs are thrice as likely to be a domesticated animal than dogs not wearing scarfs".



                                            If A is not true, then you can imagine that the world could be made of 50 Dogs, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs). Same stats for cats.



                                            Then, if you saw a domesticated animal in this world, it would have 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) and 40% chance of having a scarf (20/50, 10 Dogs and 10 Cats out of 50 domesticated animals).



                                            However, if A is true, then you have a world where there are 50 Dogs, 25 of them domesticated (of which 15 wear scarfs), 25 of them wild (of which 5 wear scarfs). Cats maintain the old stats: 50 Cats, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs).



                                            Then, if you saw a domesticated animal in this world, it would have the same 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) but would have 50% (25/50, 15 Dogs and 10 Cats out of 50 domesticated animals).



                                            As you can see, if you say that A is true, then if you saw a domesticated animal wearing a scarf in the world, it would be more likely a Dog (60% or 15/25) than any other animal (in this case Cat, 40% or 10/25).






                                            share|cite|improve this answer










                                            New contributor




                                            H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.






                                            $endgroup$



                                            It seems there is some confusion between causation and correlation. Indeed, the question statement is false for causation, as can be seen by an example such as:



                                            • If a dog is wearing a scarf, then it is a domesticated animal.

                                            The following is not true:



                                            • Seeing a domesticated animal wearing a scarf implies it is a dog.

                                            • Seeing a domesticated dog implies it is wearing a scarf.

                                            However, if you are thinking of probabilities (correlation) then it IS true:



                                            • Dogs wearing scarfs are much more likely to be a domesticated animal than dogs not wearing scarfs (or animals in general for that matter)

                                            The following is true:



                                            • A domesticated animal wearing a scarf is more likely to be a dog than another animal.

                                            • A domesticated dog is more likely to be wearing a scarf than a non-domesticated dog.

                                            If this is not intuitive, think of a pool of animals including ants, dogs and cats. Dogs and cats can both be domesticated and wear scarfs, ants can't neither.



                                            1. If you increase the probability of domesticated animals in your pool, it also will mean you will increase the chance of seeing an animal wearing a scarf.

                                            2. If you increase the probability of either cats or dogs, then you will also increase the probability of seeing an animal wearing a scarf.

                                            Being domesticated is the "secret" link between the animal and wearing a scarf, and that "secret" link will exert its influence both ways.



                                            Edit: Giving an example to your question in the comments:



                                            Imagine a world where animals are either Cats or Dogs. They can be either domesticated or not. They can wear a scarf or not. Imagine there exist 100 total animals, 50 Dogs and 50 Cats.



                                            Now consider the statement A to be: "Dogs wearing scarfs are thrice as likely to be a domesticated animal than dogs not wearing scarfs".



                                            If A is not true, then you can imagine that the world could be made of 50 Dogs, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs). Same stats for cats.



                                            Then, if you saw a domesticated animal in this world, it would have 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) and 40% chance of having a scarf (20/50, 10 Dogs and 10 Cats out of 50 domesticated animals).



                                            However, if A is true, then you have a world where there are 50 Dogs, 25 of them domesticated (of which 15 wear scarfs), 25 of them wild (of which 5 wear scarfs). Cats maintain the old stats: 50 Cats, 25 of them domesticated (of which 10 wear scarfs), 25 of them wild (of which 10 wear scarfs).



                                            Then, if you saw a domesticated animal in this world, it would have the same 50% chance of being a dog (25/50, 25 dogs out of 50 domesticated animals) but would have 50% (25/50, 15 Dogs and 10 Cats out of 50 domesticated animals).



                                            As you can see, if you say that A is true, then if you saw a domesticated animal wearing a scarf in the world, it would be more likely a Dog (60% or 15/25) than any other animal (in this case Cat, 40% or 10/25).







                                            share|cite|improve this answer










                                            New contributor




                                            H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.









                                            share|cite|improve this answer



                                            share|cite|improve this answer








                                            edited 17 hours ago





















                                            New contributor




                                            H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.









                                            answered 19 hours ago









                                            H4uZH4uZ

                                            112




                                            112




                                            New contributor




                                            H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.





                                            New contributor





                                            H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.






                                            H4uZ is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.











                                            • $begingroup$
                                              This is the line I have a problem with "A domesticated animal wearing a scarf is more likely to be a dog than another animal." When we made our initial statement we did not make any claim on the other animals that could wear scarfs. There could be 100s. We only made a statement about dogs.
                                              $endgroup$
                                              – Rahul Deora
                                              18 hours ago











                                            • $begingroup$
                                              See if my edit helps with your particular issue.
                                              $endgroup$
                                              – H4uZ
                                              17 hours ago
















                                            • $begingroup$
                                              This is the line I have a problem with "A domesticated animal wearing a scarf is more likely to be a dog than another animal." When we made our initial statement we did not make any claim on the other animals that could wear scarfs. There could be 100s. We only made a statement about dogs.
                                              $endgroup$
                                              – Rahul Deora
                                              18 hours ago











                                            • $begingroup$
                                              See if my edit helps with your particular issue.
                                              $endgroup$
                                              – H4uZ
                                              17 hours ago















                                            $begingroup$
                                            This is the line I have a problem with "A domesticated animal wearing a scarf is more likely to be a dog than another animal." When we made our initial statement we did not make any claim on the other animals that could wear scarfs. There could be 100s. We only made a statement about dogs.
                                            $endgroup$
                                            – Rahul Deora
                                            18 hours ago





                                            $begingroup$
                                            This is the line I have a problem with "A domesticated animal wearing a scarf is more likely to be a dog than another animal." When we made our initial statement we did not make any claim on the other animals that could wear scarfs. There could be 100s. We only made a statement about dogs.
                                            $endgroup$
                                            – Rahul Deora
                                            18 hours ago













                                            $begingroup$
                                            See if my edit helps with your particular issue.
                                            $endgroup$
                                            – H4uZ
                                            17 hours ago




                                            $begingroup$
                                            See if my edit helps with your particular issue.
                                            $endgroup$
                                            – H4uZ
                                            17 hours ago











                                            0












                                            $begingroup$

                                            There is a confusion here between causation and correlation. So I'll give you an example where the exact opposite happens.



                                            Some people are rich, some are poor. Some poor people are given benefits, which makes them less poor. But people who get benefits are still more likely to be poor, even with benefits.



                                            If you are given benefits, that makes it more likely that you can afford cinema tickets. ("Makes it more likely" meaning causality). But if you can afford cinema tickets, that makes it less likely that you are among the people who are poor enough to get benefits, so if you can afford cinema tickets, you are less likely to get benefits.






                                            share|cite|improve this answer









                                            $endgroup$








                                            • 5




                                              $begingroup$
                                              This isn't an answer to the question. Interesting, but not an answer. In fact, it's talking about a different scenario; the reason the opposite happens is that it's using two different metrics that are named similarly (poor without benefits v.s. poor with benefits) and as such is a completely different scenario.
                                              $endgroup$
                                              – wizzwizz4
                                              yesterday
















                                            0












                                            $begingroup$

                                            There is a confusion here between causation and correlation. So I'll give you an example where the exact opposite happens.



                                            Some people are rich, some are poor. Some poor people are given benefits, which makes them less poor. But people who get benefits are still more likely to be poor, even with benefits.



                                            If you are given benefits, that makes it more likely that you can afford cinema tickets. ("Makes it more likely" meaning causality). But if you can afford cinema tickets, that makes it less likely that you are among the people who are poor enough to get benefits, so if you can afford cinema tickets, you are less likely to get benefits.






                                            share|cite|improve this answer









                                            $endgroup$








                                            • 5




                                              $begingroup$
                                              This isn't an answer to the question. Interesting, but not an answer. In fact, it's talking about a different scenario; the reason the opposite happens is that it's using two different metrics that are named similarly (poor without benefits v.s. poor with benefits) and as such is a completely different scenario.
                                              $endgroup$
                                              – wizzwizz4
                                              yesterday














                                            0












                                            0








                                            0





                                            $begingroup$

                                            There is a confusion here between causation and correlation. So I'll give you an example where the exact opposite happens.



                                            Some people are rich, some are poor. Some poor people are given benefits, which makes them less poor. But people who get benefits are still more likely to be poor, even with benefits.



                                            If you are given benefits, that makes it more likely that you can afford cinema tickets. ("Makes it more likely" meaning causality). But if you can afford cinema tickets, that makes it less likely that you are among the people who are poor enough to get benefits, so if you can afford cinema tickets, you are less likely to get benefits.






                                            share|cite|improve this answer









                                            $endgroup$



                                            There is a confusion here between causation and correlation. So I'll give you an example where the exact opposite happens.



                                            Some people are rich, some are poor. Some poor people are given benefits, which makes them less poor. But people who get benefits are still more likely to be poor, even with benefits.



                                            If you are given benefits, that makes it more likely that you can afford cinema tickets. ("Makes it more likely" meaning causality). But if you can afford cinema tickets, that makes it less likely that you are among the people who are poor enough to get benefits, so if you can afford cinema tickets, you are less likely to get benefits.







                                            share|cite|improve this answer












                                            share|cite|improve this answer



                                            share|cite|improve this answer










                                            answered yesterday









                                            gnasher729gnasher729

                                            48133




                                            48133







                                            • 5




                                              $begingroup$
                                              This isn't an answer to the question. Interesting, but not an answer. In fact, it's talking about a different scenario; the reason the opposite happens is that it's using two different metrics that are named similarly (poor without benefits v.s. poor with benefits) and as such is a completely different scenario.
                                              $endgroup$
                                              – wizzwizz4
                                              yesterday













                                            • 5




                                              $begingroup$
                                              This isn't an answer to the question. Interesting, but not an answer. In fact, it's talking about a different scenario; the reason the opposite happens is that it's using two different metrics that are named similarly (poor without benefits v.s. poor with benefits) and as such is a completely different scenario.
                                              $endgroup$
                                              – wizzwizz4
                                              yesterday








                                            5




                                            5




                                            $begingroup$
                                            This isn't an answer to the question. Interesting, but not an answer. In fact, it's talking about a different scenario; the reason the opposite happens is that it's using two different metrics that are named similarly (poor without benefits v.s. poor with benefits) and as such is a completely different scenario.
                                            $endgroup$
                                            – wizzwizz4
                                            yesterday





                                            $begingroup$
                                            This isn't an answer to the question. Interesting, but not an answer. In fact, it's talking about a different scenario; the reason the opposite happens is that it's using two different metrics that are named similarly (poor without benefits v.s. poor with benefits) and as such is a completely different scenario.
                                            $endgroup$
                                            – wizzwizz4
                                            yesterday












                                            0












                                            $begingroup$

                                            The intuition becomes clear if you look at the stronger statement:




                                            If A implies B, then B makes A more likely.




                                            Implication:
                                            A true -> B true
                                            A false -> B true or false
                                            Reverse implication:
                                            B true -> A true or false
                                            B false -> A false


                                            Obviously A is more likely to be true if B is known to be true as well, because if B was false then so would be A. The same logic applies to the weaker statement:




                                            If A makes B more likely, then B makes A more likely.




                                            Weak implication:
                                            A true -> B true or (unlikely) false
                                            A false -> B true or false
                                            Reverse weak implication:
                                            B true -> A true or false
                                            B false -> A false or (unlikely) true





                                            share|cite|improve this answer








                                            New contributor




                                            Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.






                                            $endgroup$












                                            • $begingroup$
                                              I think what you are saying in the first statement is that in a venn diagram if A is contained in B, then if B is true n(A)/n(B) must be higher than n(A)/n(S) as B is a smaller space than S. Even in the second, you say likewise?
                                              $endgroup$
                                              – Rahul Deora
                                              17 hours ago










                                            • $begingroup$
                                              @RahulDeora - Yes, that's how it works. The weak version is much less obvious, but you already did the math anyway. What you asked for is the intuition behind the result, which can be best observed in the stronger statement.
                                              $endgroup$
                                              – Rainer P.
                                              15 hours ago















                                            0












                                            $begingroup$

                                            The intuition becomes clear if you look at the stronger statement:




                                            If A implies B, then B makes A more likely.




                                            Implication:
                                            A true -> B true
                                            A false -> B true or false
                                            Reverse implication:
                                            B true -> A true or false
                                            B false -> A false


                                            Obviously A is more likely to be true if B is known to be true as well, because if B was false then so would be A. The same logic applies to the weaker statement:




                                            If A makes B more likely, then B makes A more likely.




                                            Weak implication:
                                            A true -> B true or (unlikely) false
                                            A false -> B true or false
                                            Reverse weak implication:
                                            B true -> A true or false
                                            B false -> A false or (unlikely) true





                                            share|cite|improve this answer








                                            New contributor




                                            Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.






                                            $endgroup$












                                            • $begingroup$
                                              I think what you are saying in the first statement is that in a venn diagram if A is contained in B, then if B is true n(A)/n(B) must be higher than n(A)/n(S) as B is a smaller space than S. Even in the second, you say likewise?
                                              $endgroup$
                                              – Rahul Deora
                                              17 hours ago










                                            • $begingroup$
                                              @RahulDeora - Yes, that's how it works. The weak version is much less obvious, but you already did the math anyway. What you asked for is the intuition behind the result, which can be best observed in the stronger statement.
                                              $endgroup$
                                              – Rainer P.
                                              15 hours ago













                                            0












                                            0








                                            0





                                            $begingroup$

                                            The intuition becomes clear if you look at the stronger statement:




                                            If A implies B, then B makes A more likely.




                                            Implication:
                                            A true -> B true
                                            A false -> B true or false
                                            Reverse implication:
                                            B true -> A true or false
                                            B false -> A false


                                            Obviously A is more likely to be true if B is known to be true as well, because if B was false then so would be A. The same logic applies to the weaker statement:




                                            If A makes B more likely, then B makes A more likely.




                                            Weak implication:
                                            A true -> B true or (unlikely) false
                                            A false -> B true or false
                                            Reverse weak implication:
                                            B true -> A true or false
                                            B false -> A false or (unlikely) true





                                            share|cite|improve this answer








                                            New contributor




                                            Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.






                                            $endgroup$



                                            The intuition becomes clear if you look at the stronger statement:




                                            If A implies B, then B makes A more likely.




                                            Implication:
                                            A true -> B true
                                            A false -> B true or false
                                            Reverse implication:
                                            B true -> A true or false
                                            B false -> A false


                                            Obviously A is more likely to be true if B is known to be true as well, because if B was false then so would be A. The same logic applies to the weaker statement:




                                            If A makes B more likely, then B makes A more likely.




                                            Weak implication:
                                            A true -> B true or (unlikely) false
                                            A false -> B true or false
                                            Reverse weak implication:
                                            B true -> A true or false
                                            B false -> A false or (unlikely) true






                                            share|cite|improve this answer








                                            New contributor




                                            Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.









                                            share|cite|improve this answer



                                            share|cite|improve this answer






                                            New contributor




                                            Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.









                                            answered 18 hours ago









                                            Rainer P.Rainer P.

                                            101




                                            101




                                            New contributor




                                            Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.





                                            New contributor





                                            Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.






                                            Rainer P. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                            Check out our Code of Conduct.











                                            • $begingroup$
                                              I think what you are saying in the first statement is that in a venn diagram if A is contained in B, then if B is true n(A)/n(B) must be higher than n(A)/n(S) as B is a smaller space than S. Even in the second, you say likewise?
                                              $endgroup$
                                              – Rahul Deora
                                              17 hours ago










                                            • $begingroup$
                                              @RahulDeora - Yes, that's how it works. The weak version is much less obvious, but you already did the math anyway. What you asked for is the intuition behind the result, which can be best observed in the stronger statement.
                                              $endgroup$
                                              – Rainer P.
                                              15 hours ago
















                                            • $begingroup$
                                              I think what you are saying in the first statement is that in a venn diagram if A is contained in B, then if B is true n(A)/n(B) must be higher than n(A)/n(S) as B is a smaller space than S. Even in the second, you say likewise?
                                              $endgroup$
                                              – Rahul Deora
                                              17 hours ago










                                            • $begingroup$
                                              @RahulDeora - Yes, that's how it works. The weak version is much less obvious, but you already did the math anyway. What you asked for is the intuition behind the result, which can be best observed in the stronger statement.
                                              $endgroup$
                                              – Rainer P.
                                              15 hours ago















                                            $begingroup$
                                            I think what you are saying in the first statement is that in a venn diagram if A is contained in B, then if B is true n(A)/n(B) must be higher than n(A)/n(S) as B is a smaller space than S. Even in the second, you say likewise?
                                            $endgroup$
                                            – Rahul Deora
                                            17 hours ago




                                            $begingroup$
                                            I think what you are saying in the first statement is that in a venn diagram if A is contained in B, then if B is true n(A)/n(B) must be higher than n(A)/n(S) as B is a smaller space than S. Even in the second, you say likewise?
                                            $endgroup$
                                            – Rahul Deora
                                            17 hours ago












                                            $begingroup$
                                            @RahulDeora - Yes, that's how it works. The weak version is much less obvious, but you already did the math anyway. What you asked for is the intuition behind the result, which can be best observed in the stronger statement.
                                            $endgroup$
                                            – Rainer P.
                                            15 hours ago




                                            $begingroup$
                                            @RahulDeora - Yes, that's how it works. The weak version is much less obvious, but you already did the math anyway. What you asked for is the intuition behind the result, which can be best observed in the stronger statement.
                                            $endgroup$
                                            – Rainer P.
                                            15 hours ago











                                            0












                                            $begingroup$

                                            Suppose Alice has a higher free throw rate than average. Then the probability of a shot being successful, given that it's attempted by Alice, is greater than the probability of a shot being successful in general $P(successful|Alice)>P(successful)$. We can also conclude that Alice's share of successful shots is greater than her share of shots in general: $P(Alice|successful)>P(Alice)$.



                                            Or suppose there's a school that has 10% of the students in its school district, but 15% of the straight-A students. Then clearly the percentage of students at that school who are straight-A students is higher than the district-wide percentage.



                                            Another way of looking at it: A is more likely, given B, if $P(A&B)>P(A)P(B)$, and that is completely symmetrical with respect to $A$ and $B$.






                                            share|cite|improve this answer









                                            $endgroup$

















                                              0












                                              $begingroup$

                                              Suppose Alice has a higher free throw rate than average. Then the probability of a shot being successful, given that it's attempted by Alice, is greater than the probability of a shot being successful in general $P(successful|Alice)>P(successful)$. We can also conclude that Alice's share of successful shots is greater than her share of shots in general: $P(Alice|successful)>P(Alice)$.



                                              Or suppose there's a school that has 10% of the students in its school district, but 15% of the straight-A students. Then clearly the percentage of students at that school who are straight-A students is higher than the district-wide percentage.



                                              Another way of looking at it: A is more likely, given B, if $P(A&B)>P(A)P(B)$, and that is completely symmetrical with respect to $A$ and $B$.






                                              share|cite|improve this answer









                                              $endgroup$















                                                0












                                                0








                                                0





                                                $begingroup$

                                                Suppose Alice has a higher free throw rate than average. Then the probability of a shot being successful, given that it's attempted by Alice, is greater than the probability of a shot being successful in general $P(successful|Alice)>P(successful)$. We can also conclude that Alice's share of successful shots is greater than her share of shots in general: $P(Alice|successful)>P(Alice)$.



                                                Or suppose there's a school that has 10% of the students in its school district, but 15% of the straight-A students. Then clearly the percentage of students at that school who are straight-A students is higher than the district-wide percentage.



                                                Another way of looking at it: A is more likely, given B, if $P(A&B)>P(A)P(B)$, and that is completely symmetrical with respect to $A$ and $B$.






                                                share|cite|improve this answer









                                                $endgroup$



                                                Suppose Alice has a higher free throw rate than average. Then the probability of a shot being successful, given that it's attempted by Alice, is greater than the probability of a shot being successful in general $P(successful|Alice)>P(successful)$. We can also conclude that Alice's share of successful shots is greater than her share of shots in general: $P(Alice|successful)>P(Alice)$.



                                                Or suppose there's a school that has 10% of the students in its school district, but 15% of the straight-A students. Then clearly the percentage of students at that school who are straight-A students is higher than the district-wide percentage.



                                                Another way of looking at it: A is more likely, given B, if $P(A&B)>P(A)P(B)$, and that is completely symmetrical with respect to $A$ and $B$.







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered 9 hours ago









                                                AcccumulationAcccumulation

                                                1,68626




                                                1,68626















                                                    protected by gung 17 hours ago



                                                    Thank you for your interest in this question.
                                                    Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).



                                                    Would you like to answer one of these unanswered questions instead?



                                                    -association-measure, conditional-probability, inference, intuition, probability

                                                    Popular posts from this blog

                                                    Identify plant with long narrow paired leaves and reddish stems Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is this plant with long sharp leaves? Is it a weed?What is this 3ft high, stalky plant, with mid sized narrow leaves?What is this young shrub with opposite ovate, crenate leaves and reddish stems?What is this plant with large broad serrated leaves?Identify this upright branching weed with long leaves and reddish stemsPlease help me identify this bulbous plant with long, broad leaves and white flowersWhat is this small annual with narrow gray/green leaves and rust colored daisy-type flowers?What is this chilli plant?Does anyone know what type of chilli plant this is?Help identify this plant

                                                    fontconfig warning: “/etc/fonts/fonts.conf”, line 100: unknown “element blank” The 2019 Stack Overflow Developer Survey Results Are In“tar: unrecognized option --warning” during 'apt-get install'How to fix Fontconfig errorHow do I figure out which font file is chosen for a system generic font alias?Why are some apt-get-installed fonts being ignored by fc-list, xfontsel, etc?Reload settings in /etc/fonts/conf.dTaking 30 seconds longer to boot after upgrade from jessie to stretchHow to match multiple font names with a single <match> element?Adding a custom font to fontconfigRemoving fonts from fontconfig <match> resultsBroken fonts after upgrading Firefox ESR to latest Firefox

                                                    Shilpa Shastras Contents Description In painting In carpentry In metallurgy Shilpa Shastra education in ancient India Treatises on Shilpa Shastras See also References Further reading External links Navigation menueOverviewTraditions of the Indian Craftsman251930242ŚilpinŚilpiniTraditions of the Indian CraftsmanThe Technique of Wall Painting in Ancient IndiaEssay on the Architecture of the HindusThe Journal of the Society of Arts10.1007/s11837-998-0378-3The role of India in the diffusion of early culturesTraditions of the Indian CraftsmanAn Encyclopedia of Hindu ArchitectureBibliography of Vastu Shastra Literature, 1834-2009The Technique of Wall Painting in Ancient India4483067Les lapidaires indiens