General topology proving something for all of its pointsIf a set contains all its limit points must it be closed?Topology and limit pointsTwo trivial questions in general topologypoint set topology: closed points denseLimit points TopologyFinite point set has limit points for general topological spaces?General topologyGeneral topology: looking for a brief and clear proof that the two main definitions of “closure” are the same.A subset of a topological space is closed iff it contains all its limit points - true or false?Questions on general topology

What defines a dissertation?

Is expanding the research of a group into machine learning as a PhD student risky?

Why is delta-v is the most useful quantity for planning space travel?

Using parameter substitution on a Bash array

voltage of sounds of mp3files

Understanding "audieritis" in Psalm 94

What does this 7 mean above the f flat

Personal Teleportation as a Weapon

How to be diplomatic in refusing to write code that breaches the privacy of our users

Is the destination of a commercial flight important for the pilot?

Generic lambda vs generic function give different behaviour

How do I define a right arrow with bar in LaTeX?

(Bedrock Edition) Loading more than six chunks at once

Was Spock the First Vulcan in Starfleet?

Teaching indefinite integrals that require special-casing

Why did Kant, Hegel, and Adorno leave some words and phrases in the Greek alphabet?

Can I use my Chinese passport to enter China after I acquired another citizenship?

Your magic is very sketchy

What is the opposite of 'gravitas'?

How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?

If you attempt to grapple an opponent that you are hidden from, do they roll at disadvantage?

Ways to speed up user implemented RK4

Why Were Madagascar and New Zealand Discovered So Late?

Why is `const int& k = i; ++i; ` possible?



General topology proving something for all of its points


If a set contains all its limit points must it be closed?Topology and limit pointsTwo trivial questions in general topologypoint set topology: closed points denseLimit points TopologyFinite point set has limit points for general topological spaces?General topologyGeneral topology: looking for a brief and clear proof that the two main definitions of “closure” are the same.A subset of a topological space is closed iff it contains all its limit points - true or false?Questions on general topology













2












$begingroup$


My question is: if you prove that something is true for all points in a topological space or a subset of some topological space, does that imply that this property holds for the whole topological space or the subset of the topological space?



EDIT: more concrete if you have a topological space where all of its points are closed then is this space also closed? If that even makes sense.



If this is true am I then allowed to pick an arbitrary point of the space and then show that since it holds for this one point then the topological space has this property?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What kind of property are we talking about?
    $endgroup$
    – st.math
    yesterday






  • 1




    $begingroup$
    $X$ is closed in $X$ by definition...
    $endgroup$
    – YuiTo Cheng
    yesterday







  • 1




    $begingroup$
    Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
    $endgroup$
    – Arthur
    yesterday






  • 1




    $begingroup$
    Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
    $endgroup$
    – Robert Thingum
    yesterday







  • 2




    $begingroup$
    It's because finite union of closed sets is closed
    $endgroup$
    – YuiTo Cheng
    yesterday
















2












$begingroup$


My question is: if you prove that something is true for all points in a topological space or a subset of some topological space, does that imply that this property holds for the whole topological space or the subset of the topological space?



EDIT: more concrete if you have a topological space where all of its points are closed then is this space also closed? If that even makes sense.



If this is true am I then allowed to pick an arbitrary point of the space and then show that since it holds for this one point then the topological space has this property?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What kind of property are we talking about?
    $endgroup$
    – st.math
    yesterday






  • 1




    $begingroup$
    $X$ is closed in $X$ by definition...
    $endgroup$
    – YuiTo Cheng
    yesterday







  • 1




    $begingroup$
    Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
    $endgroup$
    – Arthur
    yesterday






  • 1




    $begingroup$
    Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
    $endgroup$
    – Robert Thingum
    yesterday







  • 2




    $begingroup$
    It's because finite union of closed sets is closed
    $endgroup$
    – YuiTo Cheng
    yesterday














2












2








2





$begingroup$


My question is: if you prove that something is true for all points in a topological space or a subset of some topological space, does that imply that this property holds for the whole topological space or the subset of the topological space?



EDIT: more concrete if you have a topological space where all of its points are closed then is this space also closed? If that even makes sense.



If this is true am I then allowed to pick an arbitrary point of the space and then show that since it holds for this one point then the topological space has this property?










share|cite|improve this question











$endgroup$




My question is: if you prove that something is true for all points in a topological space or a subset of some topological space, does that imply that this property holds for the whole topological space or the subset of the topological space?



EDIT: more concrete if you have a topological space where all of its points are closed then is this space also closed? If that even makes sense.



If this is true am I then allowed to pick an arbitrary point of the space and then show that since it holds for this one point then the topological space has this property?







general-topology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







Jensens

















asked yesterday









JensensJensens

366




366







  • 1




    $begingroup$
    What kind of property are we talking about?
    $endgroup$
    – st.math
    yesterday






  • 1




    $begingroup$
    $X$ is closed in $X$ by definition...
    $endgroup$
    – YuiTo Cheng
    yesterday







  • 1




    $begingroup$
    Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
    $endgroup$
    – Arthur
    yesterday






  • 1




    $begingroup$
    Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
    $endgroup$
    – Robert Thingum
    yesterday







  • 2




    $begingroup$
    It's because finite union of closed sets is closed
    $endgroup$
    – YuiTo Cheng
    yesterday













  • 1




    $begingroup$
    What kind of property are we talking about?
    $endgroup$
    – st.math
    yesterday






  • 1




    $begingroup$
    $X$ is closed in $X$ by definition...
    $endgroup$
    – YuiTo Cheng
    yesterday







  • 1




    $begingroup$
    Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
    $endgroup$
    – Arthur
    yesterday






  • 1




    $begingroup$
    Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
    $endgroup$
    – Robert Thingum
    yesterday







  • 2




    $begingroup$
    It's because finite union of closed sets is closed
    $endgroup$
    – YuiTo Cheng
    yesterday








1




1




$begingroup$
What kind of property are we talking about?
$endgroup$
– st.math
yesterday




$begingroup$
What kind of property are we talking about?
$endgroup$
– st.math
yesterday




1




1




$begingroup$
$X$ is closed in $X$ by definition...
$endgroup$
– YuiTo Cheng
yesterday





$begingroup$
$X$ is closed in $X$ by definition...
$endgroup$
– YuiTo Cheng
yesterday





1




1




$begingroup$
Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
$endgroup$
– Arthur
yesterday




$begingroup$
Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
$endgroup$
– Arthur
yesterday




1




1




$begingroup$
Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
$endgroup$
– Robert Thingum
yesterday





$begingroup$
Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
$endgroup$
– Robert Thingum
yesterday





2




2




$begingroup$
It's because finite union of closed sets is closed
$endgroup$
– YuiTo Cheng
yesterday





$begingroup$
It's because finite union of closed sets is closed
$endgroup$
– YuiTo Cheng
yesterday











3 Answers
3






active

oldest

votes


















4












$begingroup$

The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.






    share|cite|improve this answer









    $endgroup$




















      3












      $begingroup$

      Taken literally, your question is ill-posed.



      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
        $endgroup$
        – Jensens
        yesterday










      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161827%2fgeneral-topology-proving-something-for-all-of-its-points%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



      A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.






      share|cite|improve this answer









      $endgroup$

















        4












        $begingroup$

        The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



        A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.






        share|cite|improve this answer









        $endgroup$















          4












          4








          4





          $begingroup$

          The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



          A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.






          share|cite|improve this answer









          $endgroup$



          The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



          A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          José Carlos SantosJosé Carlos Santos

          170k23132238




          170k23132238





















              3












              $begingroup$

              As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.






                  share|cite|improve this answer









                  $endgroup$



                  As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  ArthurArthur

                  120k7120203




                  120k7120203





















                      3












                      $begingroup$

                      Taken literally, your question is ill-posed.



                      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



                      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




                      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




                      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



                      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



                      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                        $endgroup$
                        – Jensens
                        yesterday















                      3












                      $begingroup$

                      Taken literally, your question is ill-posed.



                      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



                      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




                      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




                      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



                      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



                      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                        $endgroup$
                        – Jensens
                        yesterday













                      3












                      3








                      3





                      $begingroup$

                      Taken literally, your question is ill-posed.



                      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



                      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




                      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




                      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



                      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



                      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.






                      share|cite|improve this answer









                      $endgroup$



                      Taken literally, your question is ill-posed.



                      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



                      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




                      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




                      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



                      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



                      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered yesterday









                      tomasztomasz

                      24k23482




                      24k23482











                      • $begingroup$
                        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                        $endgroup$
                        – Jensens
                        yesterday
















                      • $begingroup$
                        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                        $endgroup$
                        – Jensens
                        yesterday















                      $begingroup$
                      Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                      $endgroup$
                      – Jensens
                      yesterday




                      $begingroup$
                      Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                      $endgroup$
                      – Jensens
                      yesterday

















                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161827%2fgeneral-topology-proving-something-for-all-of-its-points%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      -general-topology

                      Popular posts from this blog

                      Mobil Contents History Mobil brands Former Mobil brands Lukoil transaction Mobil UK Mobil Australia Mobil New Zealand Mobil Greece Mobil in Japan Mobil in Canada Mobil Egypt See also References External links Navigation menuwww.mobil.com"Mobil Corporation"the original"Our Houston campus""Business & Finance: Socony-Vacuum Corp.""Popular Mechanics""Lubrite Technologies""Exxon Mobil campus 'clearly happening'""Toledo Blade - Google News Archive Search""The Lion and the Moose - How 2 Executives Pulled off the Biggest Merger Ever""ExxonMobil Press Release""Lubricants""Archived copy"the original"Mobil 1™ and Mobil Super™ motor oil and synthetic motor oil - Mobil™ Motor Oils""Mobil Delvac""Mobil Industrial website""The State of Competition in Gasoline Marketing: The Effects of Refiner Operations at Retail""Mobil Travel Guide to become Forbes Travel Guide""Hotel Rankings: Forbes Merges with Mobil"the original"Jamieson oil industry history""Mobil news""Caltex pumps for control""Watchdog blocks Caltex bid""Exxon Mobil sells service station network""Mobil Oil New Zealand Limited is New Zealand's oldest oil company, with predecessor companies having first established a presence in the country in 1896""ExxonMobil subsidiaries have a business history in New Zealand stretching back more than 120 years. We are involved in petroleum refining and distribution and the marketing of fuels, lubricants and chemical products""Archived copy"the original"Exxon Mobil to Sell Its Japanese Arm for $3.9 Billion""Gas station merger will end Esso and Mobil's long run in Japan""Esso moves to affiliate itself with PC Optimum, no longer Aeroplan, in loyalty point switch""Mobil brand of gas stations to launch in Canada after deal for 213 Loblaws-owned locations""Mobil Nears Completion of Rebranding 200 Loblaw Gas Stations""Learn about ExxonMobil's operations in Egypt""Petrol and Diesel Service Stations in Egypt - Mobil"Official websiteExxon Mobil corporate websiteMobil Industrial official websiteeeeeeeeDA04275022275790-40000 0001 0860 5061n82045453134887257134887257

                      Frič See also Navigation menuinternal link

                      Identify plant with long narrow paired leaves and reddish stems Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is this plant with long sharp leaves? Is it a weed?What is this 3ft high, stalky plant, with mid sized narrow leaves?What is this young shrub with opposite ovate, crenate leaves and reddish stems?What is this plant with large broad serrated leaves?Identify this upright branching weed with long leaves and reddish stemsPlease help me identify this bulbous plant with long, broad leaves and white flowersWhat is this small annual with narrow gray/green leaves and rust colored daisy-type flowers?What is this chilli plant?Does anyone know what type of chilli plant this is?Help identify this plant