Organic chemistry Iodoform ReactionDoes resorcinol give positive iodoform test?Does acid anhydride give a positive iodoform test?Is Iodoform test restricted for only methyl ketones?Does acetic acid give a positive result with the iodoform test?Reaction of glucose with 2,4-dinitrophenylhydrazine (DNPH)Iodoform reaction of alkyl halide?Why do α-hydroxy ketones give Tollens' test?Does acetamide respond positively to iodoform test?Why does Benzoin give positive Tollen's Test?Why does CH3CH(OH)CH2CH3 give iodoform test?

Can somebody explain Brexit in a few child-proof sentences?

How do I define a right arrow with bar in LaTeX?

How will losing mobility of one hand affect my career as a programmer?

How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?

Everything Bob says is false. How does he get people to trust him?

Products and sum of cubes in Fibonacci

Why did Kant, Hegel, and Adorno leave some words and phrases in the Greek alphabet?

What are the ramifications of creating a homebrew world without an Astral Plane?

What does this 7 mean above the f flat

What would happen if the UK refused to take part in EU Parliamentary elections?

Opposite of a diet

Why does John Bercow say “unlock” after reading out the results of a vote?

Should my PhD thesis be submitted under my legal name?

Personal Teleportation as a Weapon

Why Were Madagascar and New Zealand Discovered So Late?

What's a natural way to say that someone works somewhere (for a job)?

Time travel short story where a man arrives in the late 19th century in a time machine and then sends the machine back into the past

Is there any reason not to eat food that's been dropped on the surface of the moon?

Bash method for viewing beginning and end of file

How to be diplomatic in refusing to write code that breaches the privacy of our users

Curses work by shouting - How to avoid collateral damage?

Will it be accepted, if there is no ''Main Character" stereotype?

What is difference between behavior and behaviour

Where in the Bible does the greeting ("Dominus Vobiscum") used at Mass come from?



Organic chemistry Iodoform Reaction


Does resorcinol give positive iodoform test?Does acid anhydride give a positive iodoform test?Is Iodoform test restricted for only methyl ketones?Does acetic acid give a positive result with the iodoform test?Reaction of glucose with 2,4-dinitrophenylhydrazine (DNPH)Iodoform reaction of alkyl halide?Why do α-hydroxy ketones give Tollens' test?Does acetamide respond positively to iodoform test?Why does Benzoin give positive Tollen's Test?Why does CH3CH(OH)CH2CH3 give iodoform test?













8












$begingroup$


Why does 2',6'dimethyl-acetophenone not give iodofom test?
enter image description here










share|improve this question











$endgroup$







  • 2




    $begingroup$
    A google search for the specific reaction on 2,6-dimethyl acetophenone failed to find an answer. It did find a number of methylacetophenones that do undergo the reaction e.g. 3,4-dimethylacetophenone, 2,4,5-trimethylacetophenone. This review pdfs.semanticscholar.org/4f9f/… notes some acetophenones that do not undergo the reaction (e,g, 2,4,6 tribromoacetophenone). I can see no reason why it would not.
    $endgroup$
    – Waylander
    yesterday











  • $begingroup$
    It came in an exam.. I also thought it should give the iodoform test but the answer key for the exam said it would the triiodide intermediate but will not give the final compound i.e. CHI_3
    $endgroup$
    – user224359
    yesterday






  • 3




    $begingroup$
    Possibly there is too much steric hindrance for the OH- to attack the tri-iodo intermediate. Unless it has been specifically covered in your lectures or textbook this is an unfair question.
    $endgroup$
    – Waylander
    yesterday










  • $begingroup$
    @Waylander We can debate whether or not it's fair, but I think that if the question states that it does not happen and asks for a rationale, that seems totally fair game. I certainly wouldn't want to predict whether or not the reaction happens in the absence of any data.
    $endgroup$
    – Zhe
    yesterday










  • $begingroup$
    Depends entirely on the wording of the question. If states it doesn't happen then fair enough, good question. If it is just pick from a list of possible substrates then a very poor question
    $endgroup$
    – Waylander
    yesterday















8












$begingroup$


Why does 2',6'dimethyl-acetophenone not give iodofom test?
enter image description here










share|improve this question











$endgroup$







  • 2




    $begingroup$
    A google search for the specific reaction on 2,6-dimethyl acetophenone failed to find an answer. It did find a number of methylacetophenones that do undergo the reaction e.g. 3,4-dimethylacetophenone, 2,4,5-trimethylacetophenone. This review pdfs.semanticscholar.org/4f9f/… notes some acetophenones that do not undergo the reaction (e,g, 2,4,6 tribromoacetophenone). I can see no reason why it would not.
    $endgroup$
    – Waylander
    yesterday











  • $begingroup$
    It came in an exam.. I also thought it should give the iodoform test but the answer key for the exam said it would the triiodide intermediate but will not give the final compound i.e. CHI_3
    $endgroup$
    – user224359
    yesterday






  • 3




    $begingroup$
    Possibly there is too much steric hindrance for the OH- to attack the tri-iodo intermediate. Unless it has been specifically covered in your lectures or textbook this is an unfair question.
    $endgroup$
    – Waylander
    yesterday










  • $begingroup$
    @Waylander We can debate whether or not it's fair, but I think that if the question states that it does not happen and asks for a rationale, that seems totally fair game. I certainly wouldn't want to predict whether or not the reaction happens in the absence of any data.
    $endgroup$
    – Zhe
    yesterday










  • $begingroup$
    Depends entirely on the wording of the question. If states it doesn't happen then fair enough, good question. If it is just pick from a list of possible substrates then a very poor question
    $endgroup$
    – Waylander
    yesterday













8












8








8


3



$begingroup$


Why does 2',6'dimethyl-acetophenone not give iodofom test?
enter image description here










share|improve this question











$endgroup$




Why does 2',6'dimethyl-acetophenone not give iodofom test?
enter image description here







organic-chemistry carbonyl-compounds






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited yesterday









Waylander

6,60411424




6,60411424










asked yesterday









user224359user224359

584




584







  • 2




    $begingroup$
    A google search for the specific reaction on 2,6-dimethyl acetophenone failed to find an answer. It did find a number of methylacetophenones that do undergo the reaction e.g. 3,4-dimethylacetophenone, 2,4,5-trimethylacetophenone. This review pdfs.semanticscholar.org/4f9f/… notes some acetophenones that do not undergo the reaction (e,g, 2,4,6 tribromoacetophenone). I can see no reason why it would not.
    $endgroup$
    – Waylander
    yesterday











  • $begingroup$
    It came in an exam.. I also thought it should give the iodoform test but the answer key for the exam said it would the triiodide intermediate but will not give the final compound i.e. CHI_3
    $endgroup$
    – user224359
    yesterday






  • 3




    $begingroup$
    Possibly there is too much steric hindrance for the OH- to attack the tri-iodo intermediate. Unless it has been specifically covered in your lectures or textbook this is an unfair question.
    $endgroup$
    – Waylander
    yesterday










  • $begingroup$
    @Waylander We can debate whether or not it's fair, but I think that if the question states that it does not happen and asks for a rationale, that seems totally fair game. I certainly wouldn't want to predict whether or not the reaction happens in the absence of any data.
    $endgroup$
    – Zhe
    yesterday










  • $begingroup$
    Depends entirely on the wording of the question. If states it doesn't happen then fair enough, good question. If it is just pick from a list of possible substrates then a very poor question
    $endgroup$
    – Waylander
    yesterday












  • 2




    $begingroup$
    A google search for the specific reaction on 2,6-dimethyl acetophenone failed to find an answer. It did find a number of methylacetophenones that do undergo the reaction e.g. 3,4-dimethylacetophenone, 2,4,5-trimethylacetophenone. This review pdfs.semanticscholar.org/4f9f/… notes some acetophenones that do not undergo the reaction (e,g, 2,4,6 tribromoacetophenone). I can see no reason why it would not.
    $endgroup$
    – Waylander
    yesterday











  • $begingroup$
    It came in an exam.. I also thought it should give the iodoform test but the answer key for the exam said it would the triiodide intermediate but will not give the final compound i.e. CHI_3
    $endgroup$
    – user224359
    yesterday






  • 3




    $begingroup$
    Possibly there is too much steric hindrance for the OH- to attack the tri-iodo intermediate. Unless it has been specifically covered in your lectures or textbook this is an unfair question.
    $endgroup$
    – Waylander
    yesterday










  • $begingroup$
    @Waylander We can debate whether or not it's fair, but I think that if the question states that it does not happen and asks for a rationale, that seems totally fair game. I certainly wouldn't want to predict whether or not the reaction happens in the absence of any data.
    $endgroup$
    – Zhe
    yesterday










  • $begingroup$
    Depends entirely on the wording of the question. If states it doesn't happen then fair enough, good question. If it is just pick from a list of possible substrates then a very poor question
    $endgroup$
    – Waylander
    yesterday







2




2




$begingroup$
A google search for the specific reaction on 2,6-dimethyl acetophenone failed to find an answer. It did find a number of methylacetophenones that do undergo the reaction e.g. 3,4-dimethylacetophenone, 2,4,5-trimethylacetophenone. This review pdfs.semanticscholar.org/4f9f/… notes some acetophenones that do not undergo the reaction (e,g, 2,4,6 tribromoacetophenone). I can see no reason why it would not.
$endgroup$
– Waylander
yesterday





$begingroup$
A google search for the specific reaction on 2,6-dimethyl acetophenone failed to find an answer. It did find a number of methylacetophenones that do undergo the reaction e.g. 3,4-dimethylacetophenone, 2,4,5-trimethylacetophenone. This review pdfs.semanticscholar.org/4f9f/… notes some acetophenones that do not undergo the reaction (e,g, 2,4,6 tribromoacetophenone). I can see no reason why it would not.
$endgroup$
– Waylander
yesterday













$begingroup$
It came in an exam.. I also thought it should give the iodoform test but the answer key for the exam said it would the triiodide intermediate but will not give the final compound i.e. CHI_3
$endgroup$
– user224359
yesterday




$begingroup$
It came in an exam.. I also thought it should give the iodoform test but the answer key for the exam said it would the triiodide intermediate but will not give the final compound i.e. CHI_3
$endgroup$
– user224359
yesterday




3




3




$begingroup$
Possibly there is too much steric hindrance for the OH- to attack the tri-iodo intermediate. Unless it has been specifically covered in your lectures or textbook this is an unfair question.
$endgroup$
– Waylander
yesterday




$begingroup$
Possibly there is too much steric hindrance for the OH- to attack the tri-iodo intermediate. Unless it has been specifically covered in your lectures or textbook this is an unfair question.
$endgroup$
– Waylander
yesterday












$begingroup$
@Waylander We can debate whether or not it's fair, but I think that if the question states that it does not happen and asks for a rationale, that seems totally fair game. I certainly wouldn't want to predict whether or not the reaction happens in the absence of any data.
$endgroup$
– Zhe
yesterday




$begingroup$
@Waylander We can debate whether or not it's fair, but I think that if the question states that it does not happen and asks for a rationale, that seems totally fair game. I certainly wouldn't want to predict whether or not the reaction happens in the absence of any data.
$endgroup$
– Zhe
yesterday












$begingroup$
Depends entirely on the wording of the question. If states it doesn't happen then fair enough, good question. If it is just pick from a list of possible substrates then a very poor question
$endgroup$
– Waylander
yesterday




$begingroup$
Depends entirely on the wording of the question. If states it doesn't happen then fair enough, good question. If it is just pick from a list of possible substrates then a very poor question
$endgroup$
– Waylander
yesterday










4 Answers
4






active

oldest

votes


















13












$begingroup$

As @Waylander pointed out, it appears this reaction has not been performed and/or recorded in any literature, so it is quite dangerous to speculate.



But keeping that aside, A 3D perspective reveals that abstraction of protons from the methyl group in quite unhindered.



2',6'-acetophenone



Hence, the triiodo intermediate is well anticipated.
Triiodo substituted product



However, a quick glance at spatial orientation of iodine atoms reveals the reaction may be dead slow in the next step.



Trajectory of incoming hydroxide ion is hindered



Notice that the Burgi-Dunitz trajectory, which we may assume the incoming nucleophile to take, is hindered by the large iodine atoms and the methyl group.



It is quite safe to assume that the attack at the carbonyl carbon is unfavoured, preventing the release of the $ceCI3-$, and ultimately $ceCHI3$ never appears.



EDIT: Apparently there is some relevant literature available for similar compounds, as mentioned in this answer. Thanks to Mathew for searching and pointing it out.






share|improve this answer











$endgroup$




















    6












    $begingroup$

    During my mechanisms and named reactions lecture at bachelor’s level, a number of different mechanisms were introduced for transesterification of carboxylic acids and we were required to select the correct mechanism for a given set of reaction partners.



    One of the typical special cases was a 2,6-disubstituted benzoic ester—basically your starting material but with an ester group rather than an acetyl group. It was noted that nucleophilic attack on the carbonyl carbon was not possible as the methyl groups sterically blocked the Bürgi-Dunitz trajectory. Instead, these esterifications would proceed via an acylium cation formed by displacement of the $ceOR-$ residue; once the linear acylium cation ($cePh-C#overset+O$) was formed, this could be attacked from any angle without the ortho substituents interfering.



    It is likely, as William outlined, that the same problem exists for 2,6-dimethylacetophenone. While there should be no problem replacing the methyl hydrogens with iodides, there is no angle of attack for the hydroxide ion to generate the tetrahedral intermediate.



    In the case of transesterification, the $ceOR-$ group is a sufficiently good leaving group so that the acylium cation may form. $ceCI3-$ is a much stronger base, so it seems highly unlikely to generate a corresponding acylium in this reaction. In the usual haloform reaction, the regeneration of the $ceC=O$ double bond provides a driving force to promote the liberation of $ceCI3-$ but that pathway is not possible if an acylium must be generated.






    share|improve this answer









    $endgroup$




















      5












      $begingroup$

      There have been a few answers for this question, which make sense on steric hindrance preventing the idoform formation. However, one thing I wouldn’t agree with is almost everybody’s claim of not having literature evidence to support their theory, thus some may categorize this question as just opinion based and chose to close it (regardless how good it is). To avoid that, I’m going to try to give some acceptable literature evidence to support steric hindrance argument.



      Because of original idoform test (introduced by Lieben in 1870) is not reliable for water insoluble compounds, Fuson and Tullock provided improved idoform test in 1934 (Ref.1), which use dioxane as a secondary solvent. They have checked new method with wide variety of compounds that have been analyzed previously with Lieben’s method, but had given mixed results, some of which were misleading. For example, in a majority of these cases, the behavior toward hypoiodite has not been previously reported. Such example is pinacolone, which was previously considered as negative to the test, but given positive result with a longer period of heating (one of the evidence for role of steric hindrance). According to authors, some of the most notable negative results were given by following compounds (Figure 1; Ref. 1 & 2):



      Negative Idoform Test



      Yet, Figure 2 listed the compounds, which have given positive results, but have significant steric hindrance (Ref. 1 & 2):



      Positive Idoform Test



      Most notably, you may compare compounds 5 (negative; Figure 1) vs compound 11 (positive; Figure 2). They both have similar steric hindrance (aromatic $ceC8-H$ vs $ceC3-H$ is the only difference), yet gives contrary results. Only explanation could be acetic acid group on $ceC1-O$ must be cleaved before iodoform formation on compound 11, but similar cleavage on $ceC2-O$ of compound 5 is restricted due to its position, since it was known that 1-naphthyloxy group (conjugate base of 1-naphthol) is more stable than 2-naphthyloxy group (conjugate base of 2-naphthol). Same can be told about compound 12 giving positive test. Nonetheless, these results clearly shows that only restriction to give idiform is di-ortho-substitution on the substrate (cf., 1-4; Figure 1), which gives the additional resistance to the formation of final tetrahedral intermediate as pointed by Jan. Meanwhile, mono o-, p-, or m-substitution OR di-o,p-, o,m-, or m,m-substitution does not effect the idoform formation. This fact is stated in Ref.1 as:




      The iodoform reaction is greatly retarded by steric hindrance. The test is negative for all compounds which contain one of the requisite groupings joined to an aryl radical carrying two ortho substituents. As a matter of fact, the reaction is slow, even with pinacolone.




      Even tri-substituted compounds such as compound 8 give positive idoform test as long as two of substitutions were not in di-ortho positions. In their conclusion, Fuson and Tullock provided a generalization to the reaction (Ref.1):




      The test is positive for compounds which contain the grouping $ceCH3CO$-, $ceCH2ICO$-, or $ceCHI2CO-$ when, joined to a hydrogen atom or to a carboy atom which does not carry highly activated hydrogen atoms or groups which provide an excessive amount of steric hindrance. The test will, of course, be positive also for any compound which reacts with the reagent to give a derivative containing one of the requisite groupings. Conversely, compounds which contain one of the requisite groupings will give a negative test in case this grouping is destroyed by the hydrolytic action of the reagent before iodination is complete.




      The reference 3 would give some insight to the formation of sterically hindered idocompounds at $alphaceC$ without giving idoform (formation of the triiodide intermediate as stated in OP's comment). Also read Ref.4 for review on idoform test.




      References:



      1. R. C. Fuson, C. W. Tullock, “The Haloform Reaction. XIV. An Improved Iodoform Test,” J. Am. Chem. Soc. 1934, 56(7), 1638–1640 (DOI: 10.1021/ja01322a061).

      2. M. Večeřa, J. Gasparič, In Detection and Identification of Organic Compounds; Plenum Press: New York, NY, 1971, “Chapter XII: Carbonyl Compounds,” pp. 208-246.

      3. C. H. Fisher, H. R. Snyder, R. C. Fuson, “The Haloform Reaction. VI. Alpha-Halogen Derivatives of Hindered Ketones,” J. Am. Chem. Soc. 1932, 54(9), 3665–3674 (DOI: 10.1021/ja01348a025).

      4. R. C. Fuson, B. A. Bull, “The Haloform Reaction,” Chem. Rev. 1934, 15(3), 275–309 (DOI: 10.1021/cr60052a001).





      share|improve this answer









      $endgroup$












      • $begingroup$
        Methyl hexyl ketone doesn't give this test because of steric crowding or is there some other factor at play?
        $endgroup$
        – Avnish Kabaj
        yesterday










      • $begingroup$
        @ Avnish Kabaj: According to Ref.1, 2-octanone (methyl hexyl ketone) is positive for their improved method (even methyl cyclohexyl ketone is positive). If you didn't dissolve your water insoluble substrate in dioxane (authors' choice as the best for this test) before testing, it may give misleading results.
        $endgroup$
        – Mathew Mahindaratne
        13 hours ago










      • $begingroup$
        Thanks a lot!!!
        $endgroup$
        – Avnish Kabaj
        11 hours ago


















      3












      $begingroup$

      I'd agree with Waylander's 2nd comment - hydrolysis to form the carboxylic acid requires formation of the tetrahedral intermediate (from OH- attack on the keton), which the presence of two ortho substituents on the benzene ring doesnt allow, sterically.



      A related effect is that methyl 2,6-dimethylbenzoate doesnt undergo basic hydrolysis by the normal BAc2, since it would involve that same tetrahedral intermediate. Instead it goes via teh BAl2 mechanism (i.e. SN2 attack at the methyl group and rate-determining cleavage of the alkyl, rather than acyl bond).






      share|improve this answer









      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "431"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111511%2forganic-chemistry-iodoform-reaction%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        13












        $begingroup$

        As @Waylander pointed out, it appears this reaction has not been performed and/or recorded in any literature, so it is quite dangerous to speculate.



        But keeping that aside, A 3D perspective reveals that abstraction of protons from the methyl group in quite unhindered.



        2',6'-acetophenone



        Hence, the triiodo intermediate is well anticipated.
        Triiodo substituted product



        However, a quick glance at spatial orientation of iodine atoms reveals the reaction may be dead slow in the next step.



        Trajectory of incoming hydroxide ion is hindered



        Notice that the Burgi-Dunitz trajectory, which we may assume the incoming nucleophile to take, is hindered by the large iodine atoms and the methyl group.



        It is quite safe to assume that the attack at the carbonyl carbon is unfavoured, preventing the release of the $ceCI3-$, and ultimately $ceCHI3$ never appears.



        EDIT: Apparently there is some relevant literature available for similar compounds, as mentioned in this answer. Thanks to Mathew for searching and pointing it out.






        share|improve this answer











        $endgroup$

















          13












          $begingroup$

          As @Waylander pointed out, it appears this reaction has not been performed and/or recorded in any literature, so it is quite dangerous to speculate.



          But keeping that aside, A 3D perspective reveals that abstraction of protons from the methyl group in quite unhindered.



          2',6'-acetophenone



          Hence, the triiodo intermediate is well anticipated.
          Triiodo substituted product



          However, a quick glance at spatial orientation of iodine atoms reveals the reaction may be dead slow in the next step.



          Trajectory of incoming hydroxide ion is hindered



          Notice that the Burgi-Dunitz trajectory, which we may assume the incoming nucleophile to take, is hindered by the large iodine atoms and the methyl group.



          It is quite safe to assume that the attack at the carbonyl carbon is unfavoured, preventing the release of the $ceCI3-$, and ultimately $ceCHI3$ never appears.



          EDIT: Apparently there is some relevant literature available for similar compounds, as mentioned in this answer. Thanks to Mathew for searching and pointing it out.






          share|improve this answer











          $endgroup$















            13












            13








            13





            $begingroup$

            As @Waylander pointed out, it appears this reaction has not been performed and/or recorded in any literature, so it is quite dangerous to speculate.



            But keeping that aside, A 3D perspective reveals that abstraction of protons from the methyl group in quite unhindered.



            2',6'-acetophenone



            Hence, the triiodo intermediate is well anticipated.
            Triiodo substituted product



            However, a quick glance at spatial orientation of iodine atoms reveals the reaction may be dead slow in the next step.



            Trajectory of incoming hydroxide ion is hindered



            Notice that the Burgi-Dunitz trajectory, which we may assume the incoming nucleophile to take, is hindered by the large iodine atoms and the methyl group.



            It is quite safe to assume that the attack at the carbonyl carbon is unfavoured, preventing the release of the $ceCI3-$, and ultimately $ceCHI3$ never appears.



            EDIT: Apparently there is some relevant literature available for similar compounds, as mentioned in this answer. Thanks to Mathew for searching and pointing it out.






            share|improve this answer











            $endgroup$



            As @Waylander pointed out, it appears this reaction has not been performed and/or recorded in any literature, so it is quite dangerous to speculate.



            But keeping that aside, A 3D perspective reveals that abstraction of protons from the methyl group in quite unhindered.



            2',6'-acetophenone



            Hence, the triiodo intermediate is well anticipated.
            Triiodo substituted product



            However, a quick glance at spatial orientation of iodine atoms reveals the reaction may be dead slow in the next step.



            Trajectory of incoming hydroxide ion is hindered



            Notice that the Burgi-Dunitz trajectory, which we may assume the incoming nucleophile to take, is hindered by the large iodine atoms and the methyl group.



            It is quite safe to assume that the attack at the carbonyl carbon is unfavoured, preventing the release of the $ceCI3-$, and ultimately $ceCHI3$ never appears.



            EDIT: Apparently there is some relevant literature available for similar compounds, as mentioned in this answer. Thanks to Mathew for searching and pointing it out.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited yesterday

























            answered yesterday









            William R. EbenezerWilliam R. Ebenezer

            3878




            3878





















                6












                $begingroup$

                During my mechanisms and named reactions lecture at bachelor’s level, a number of different mechanisms were introduced for transesterification of carboxylic acids and we were required to select the correct mechanism for a given set of reaction partners.



                One of the typical special cases was a 2,6-disubstituted benzoic ester—basically your starting material but with an ester group rather than an acetyl group. It was noted that nucleophilic attack on the carbonyl carbon was not possible as the methyl groups sterically blocked the Bürgi-Dunitz trajectory. Instead, these esterifications would proceed via an acylium cation formed by displacement of the $ceOR-$ residue; once the linear acylium cation ($cePh-C#overset+O$) was formed, this could be attacked from any angle without the ortho substituents interfering.



                It is likely, as William outlined, that the same problem exists for 2,6-dimethylacetophenone. While there should be no problem replacing the methyl hydrogens with iodides, there is no angle of attack for the hydroxide ion to generate the tetrahedral intermediate.



                In the case of transesterification, the $ceOR-$ group is a sufficiently good leaving group so that the acylium cation may form. $ceCI3-$ is a much stronger base, so it seems highly unlikely to generate a corresponding acylium in this reaction. In the usual haloform reaction, the regeneration of the $ceC=O$ double bond provides a driving force to promote the liberation of $ceCI3-$ but that pathway is not possible if an acylium must be generated.






                share|improve this answer









                $endgroup$

















                  6












                  $begingroup$

                  During my mechanisms and named reactions lecture at bachelor’s level, a number of different mechanisms were introduced for transesterification of carboxylic acids and we were required to select the correct mechanism for a given set of reaction partners.



                  One of the typical special cases was a 2,6-disubstituted benzoic ester—basically your starting material but with an ester group rather than an acetyl group. It was noted that nucleophilic attack on the carbonyl carbon was not possible as the methyl groups sterically blocked the Bürgi-Dunitz trajectory. Instead, these esterifications would proceed via an acylium cation formed by displacement of the $ceOR-$ residue; once the linear acylium cation ($cePh-C#overset+O$) was formed, this could be attacked from any angle without the ortho substituents interfering.



                  It is likely, as William outlined, that the same problem exists for 2,6-dimethylacetophenone. While there should be no problem replacing the methyl hydrogens with iodides, there is no angle of attack for the hydroxide ion to generate the tetrahedral intermediate.



                  In the case of transesterification, the $ceOR-$ group is a sufficiently good leaving group so that the acylium cation may form. $ceCI3-$ is a much stronger base, so it seems highly unlikely to generate a corresponding acylium in this reaction. In the usual haloform reaction, the regeneration of the $ceC=O$ double bond provides a driving force to promote the liberation of $ceCI3-$ but that pathway is not possible if an acylium must be generated.






                  share|improve this answer









                  $endgroup$















                    6












                    6








                    6





                    $begingroup$

                    During my mechanisms and named reactions lecture at bachelor’s level, a number of different mechanisms were introduced for transesterification of carboxylic acids and we were required to select the correct mechanism for a given set of reaction partners.



                    One of the typical special cases was a 2,6-disubstituted benzoic ester—basically your starting material but with an ester group rather than an acetyl group. It was noted that nucleophilic attack on the carbonyl carbon was not possible as the methyl groups sterically blocked the Bürgi-Dunitz trajectory. Instead, these esterifications would proceed via an acylium cation formed by displacement of the $ceOR-$ residue; once the linear acylium cation ($cePh-C#overset+O$) was formed, this could be attacked from any angle without the ortho substituents interfering.



                    It is likely, as William outlined, that the same problem exists for 2,6-dimethylacetophenone. While there should be no problem replacing the methyl hydrogens with iodides, there is no angle of attack for the hydroxide ion to generate the tetrahedral intermediate.



                    In the case of transesterification, the $ceOR-$ group is a sufficiently good leaving group so that the acylium cation may form. $ceCI3-$ is a much stronger base, so it seems highly unlikely to generate a corresponding acylium in this reaction. In the usual haloform reaction, the regeneration of the $ceC=O$ double bond provides a driving force to promote the liberation of $ceCI3-$ but that pathway is not possible if an acylium must be generated.






                    share|improve this answer









                    $endgroup$



                    During my mechanisms and named reactions lecture at bachelor’s level, a number of different mechanisms were introduced for transesterification of carboxylic acids and we were required to select the correct mechanism for a given set of reaction partners.



                    One of the typical special cases was a 2,6-disubstituted benzoic ester—basically your starting material but with an ester group rather than an acetyl group. It was noted that nucleophilic attack on the carbonyl carbon was not possible as the methyl groups sterically blocked the Bürgi-Dunitz trajectory. Instead, these esterifications would proceed via an acylium cation formed by displacement of the $ceOR-$ residue; once the linear acylium cation ($cePh-C#overset+O$) was formed, this could be attacked from any angle without the ortho substituents interfering.



                    It is likely, as William outlined, that the same problem exists for 2,6-dimethylacetophenone. While there should be no problem replacing the methyl hydrogens with iodides, there is no angle of attack for the hydroxide ion to generate the tetrahedral intermediate.



                    In the case of transesterification, the $ceOR-$ group is a sufficiently good leaving group so that the acylium cation may form. $ceCI3-$ is a much stronger base, so it seems highly unlikely to generate a corresponding acylium in this reaction. In the usual haloform reaction, the regeneration of the $ceC=O$ double bond provides a driving force to promote the liberation of $ceCI3-$ but that pathway is not possible if an acylium must be generated.







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered yesterday









                    JanJan

                    49.8k7120261




                    49.8k7120261





















                        5












                        $begingroup$

                        There have been a few answers for this question, which make sense on steric hindrance preventing the idoform formation. However, one thing I wouldn’t agree with is almost everybody’s claim of not having literature evidence to support their theory, thus some may categorize this question as just opinion based and chose to close it (regardless how good it is). To avoid that, I’m going to try to give some acceptable literature evidence to support steric hindrance argument.



                        Because of original idoform test (introduced by Lieben in 1870) is not reliable for water insoluble compounds, Fuson and Tullock provided improved idoform test in 1934 (Ref.1), which use dioxane as a secondary solvent. They have checked new method with wide variety of compounds that have been analyzed previously with Lieben’s method, but had given mixed results, some of which were misleading. For example, in a majority of these cases, the behavior toward hypoiodite has not been previously reported. Such example is pinacolone, which was previously considered as negative to the test, but given positive result with a longer period of heating (one of the evidence for role of steric hindrance). According to authors, some of the most notable negative results were given by following compounds (Figure 1; Ref. 1 & 2):



                        Negative Idoform Test



                        Yet, Figure 2 listed the compounds, which have given positive results, but have significant steric hindrance (Ref. 1 & 2):



                        Positive Idoform Test



                        Most notably, you may compare compounds 5 (negative; Figure 1) vs compound 11 (positive; Figure 2). They both have similar steric hindrance (aromatic $ceC8-H$ vs $ceC3-H$ is the only difference), yet gives contrary results. Only explanation could be acetic acid group on $ceC1-O$ must be cleaved before iodoform formation on compound 11, but similar cleavage on $ceC2-O$ of compound 5 is restricted due to its position, since it was known that 1-naphthyloxy group (conjugate base of 1-naphthol) is more stable than 2-naphthyloxy group (conjugate base of 2-naphthol). Same can be told about compound 12 giving positive test. Nonetheless, these results clearly shows that only restriction to give idiform is di-ortho-substitution on the substrate (cf., 1-4; Figure 1), which gives the additional resistance to the formation of final tetrahedral intermediate as pointed by Jan. Meanwhile, mono o-, p-, or m-substitution OR di-o,p-, o,m-, or m,m-substitution does not effect the idoform formation. This fact is stated in Ref.1 as:




                        The iodoform reaction is greatly retarded by steric hindrance. The test is negative for all compounds which contain one of the requisite groupings joined to an aryl radical carrying two ortho substituents. As a matter of fact, the reaction is slow, even with pinacolone.




                        Even tri-substituted compounds such as compound 8 give positive idoform test as long as two of substitutions were not in di-ortho positions. In their conclusion, Fuson and Tullock provided a generalization to the reaction (Ref.1):




                        The test is positive for compounds which contain the grouping $ceCH3CO$-, $ceCH2ICO$-, or $ceCHI2CO-$ when, joined to a hydrogen atom or to a carboy atom which does not carry highly activated hydrogen atoms or groups which provide an excessive amount of steric hindrance. The test will, of course, be positive also for any compound which reacts with the reagent to give a derivative containing one of the requisite groupings. Conversely, compounds which contain one of the requisite groupings will give a negative test in case this grouping is destroyed by the hydrolytic action of the reagent before iodination is complete.




                        The reference 3 would give some insight to the formation of sterically hindered idocompounds at $alphaceC$ without giving idoform (formation of the triiodide intermediate as stated in OP's comment). Also read Ref.4 for review on idoform test.




                        References:



                        1. R. C. Fuson, C. W. Tullock, “The Haloform Reaction. XIV. An Improved Iodoform Test,” J. Am. Chem. Soc. 1934, 56(7), 1638–1640 (DOI: 10.1021/ja01322a061).

                        2. M. Večeřa, J. Gasparič, In Detection and Identification of Organic Compounds; Plenum Press: New York, NY, 1971, “Chapter XII: Carbonyl Compounds,” pp. 208-246.

                        3. C. H. Fisher, H. R. Snyder, R. C. Fuson, “The Haloform Reaction. VI. Alpha-Halogen Derivatives of Hindered Ketones,” J. Am. Chem. Soc. 1932, 54(9), 3665–3674 (DOI: 10.1021/ja01348a025).

                        4. R. C. Fuson, B. A. Bull, “The Haloform Reaction,” Chem. Rev. 1934, 15(3), 275–309 (DOI: 10.1021/cr60052a001).





                        share|improve this answer









                        $endgroup$












                        • $begingroup$
                          Methyl hexyl ketone doesn't give this test because of steric crowding or is there some other factor at play?
                          $endgroup$
                          – Avnish Kabaj
                          yesterday










                        • $begingroup$
                          @ Avnish Kabaj: According to Ref.1, 2-octanone (methyl hexyl ketone) is positive for their improved method (even methyl cyclohexyl ketone is positive). If you didn't dissolve your water insoluble substrate in dioxane (authors' choice as the best for this test) before testing, it may give misleading results.
                          $endgroup$
                          – Mathew Mahindaratne
                          13 hours ago










                        • $begingroup$
                          Thanks a lot!!!
                          $endgroup$
                          – Avnish Kabaj
                          11 hours ago















                        5












                        $begingroup$

                        There have been a few answers for this question, which make sense on steric hindrance preventing the idoform formation. However, one thing I wouldn’t agree with is almost everybody’s claim of not having literature evidence to support their theory, thus some may categorize this question as just opinion based and chose to close it (regardless how good it is). To avoid that, I’m going to try to give some acceptable literature evidence to support steric hindrance argument.



                        Because of original idoform test (introduced by Lieben in 1870) is not reliable for water insoluble compounds, Fuson and Tullock provided improved idoform test in 1934 (Ref.1), which use dioxane as a secondary solvent. They have checked new method with wide variety of compounds that have been analyzed previously with Lieben’s method, but had given mixed results, some of which were misleading. For example, in a majority of these cases, the behavior toward hypoiodite has not been previously reported. Such example is pinacolone, which was previously considered as negative to the test, but given positive result with a longer period of heating (one of the evidence for role of steric hindrance). According to authors, some of the most notable negative results were given by following compounds (Figure 1; Ref. 1 & 2):



                        Negative Idoform Test



                        Yet, Figure 2 listed the compounds, which have given positive results, but have significant steric hindrance (Ref. 1 & 2):



                        Positive Idoform Test



                        Most notably, you may compare compounds 5 (negative; Figure 1) vs compound 11 (positive; Figure 2). They both have similar steric hindrance (aromatic $ceC8-H$ vs $ceC3-H$ is the only difference), yet gives contrary results. Only explanation could be acetic acid group on $ceC1-O$ must be cleaved before iodoform formation on compound 11, but similar cleavage on $ceC2-O$ of compound 5 is restricted due to its position, since it was known that 1-naphthyloxy group (conjugate base of 1-naphthol) is more stable than 2-naphthyloxy group (conjugate base of 2-naphthol). Same can be told about compound 12 giving positive test. Nonetheless, these results clearly shows that only restriction to give idiform is di-ortho-substitution on the substrate (cf., 1-4; Figure 1), which gives the additional resistance to the formation of final tetrahedral intermediate as pointed by Jan. Meanwhile, mono o-, p-, or m-substitution OR di-o,p-, o,m-, or m,m-substitution does not effect the idoform formation. This fact is stated in Ref.1 as:




                        The iodoform reaction is greatly retarded by steric hindrance. The test is negative for all compounds which contain one of the requisite groupings joined to an aryl radical carrying two ortho substituents. As a matter of fact, the reaction is slow, even with pinacolone.




                        Even tri-substituted compounds such as compound 8 give positive idoform test as long as two of substitutions were not in di-ortho positions. In their conclusion, Fuson and Tullock provided a generalization to the reaction (Ref.1):




                        The test is positive for compounds which contain the grouping $ceCH3CO$-, $ceCH2ICO$-, or $ceCHI2CO-$ when, joined to a hydrogen atom or to a carboy atom which does not carry highly activated hydrogen atoms or groups which provide an excessive amount of steric hindrance. The test will, of course, be positive also for any compound which reacts with the reagent to give a derivative containing one of the requisite groupings. Conversely, compounds which contain one of the requisite groupings will give a negative test in case this grouping is destroyed by the hydrolytic action of the reagent before iodination is complete.




                        The reference 3 would give some insight to the formation of sterically hindered idocompounds at $alphaceC$ without giving idoform (formation of the triiodide intermediate as stated in OP's comment). Also read Ref.4 for review on idoform test.




                        References:



                        1. R. C. Fuson, C. W. Tullock, “The Haloform Reaction. XIV. An Improved Iodoform Test,” J. Am. Chem. Soc. 1934, 56(7), 1638–1640 (DOI: 10.1021/ja01322a061).

                        2. M. Večeřa, J. Gasparič, In Detection and Identification of Organic Compounds; Plenum Press: New York, NY, 1971, “Chapter XII: Carbonyl Compounds,” pp. 208-246.

                        3. C. H. Fisher, H. R. Snyder, R. C. Fuson, “The Haloform Reaction. VI. Alpha-Halogen Derivatives of Hindered Ketones,” J. Am. Chem. Soc. 1932, 54(9), 3665–3674 (DOI: 10.1021/ja01348a025).

                        4. R. C. Fuson, B. A. Bull, “The Haloform Reaction,” Chem. Rev. 1934, 15(3), 275–309 (DOI: 10.1021/cr60052a001).





                        share|improve this answer









                        $endgroup$












                        • $begingroup$
                          Methyl hexyl ketone doesn't give this test because of steric crowding or is there some other factor at play?
                          $endgroup$
                          – Avnish Kabaj
                          yesterday










                        • $begingroup$
                          @ Avnish Kabaj: According to Ref.1, 2-octanone (methyl hexyl ketone) is positive for their improved method (even methyl cyclohexyl ketone is positive). If you didn't dissolve your water insoluble substrate in dioxane (authors' choice as the best for this test) before testing, it may give misleading results.
                          $endgroup$
                          – Mathew Mahindaratne
                          13 hours ago










                        • $begingroup$
                          Thanks a lot!!!
                          $endgroup$
                          – Avnish Kabaj
                          11 hours ago













                        5












                        5








                        5





                        $begingroup$

                        There have been a few answers for this question, which make sense on steric hindrance preventing the idoform formation. However, one thing I wouldn’t agree with is almost everybody’s claim of not having literature evidence to support their theory, thus some may categorize this question as just opinion based and chose to close it (regardless how good it is). To avoid that, I’m going to try to give some acceptable literature evidence to support steric hindrance argument.



                        Because of original idoform test (introduced by Lieben in 1870) is not reliable for water insoluble compounds, Fuson and Tullock provided improved idoform test in 1934 (Ref.1), which use dioxane as a secondary solvent. They have checked new method with wide variety of compounds that have been analyzed previously with Lieben’s method, but had given mixed results, some of which were misleading. For example, in a majority of these cases, the behavior toward hypoiodite has not been previously reported. Such example is pinacolone, which was previously considered as negative to the test, but given positive result with a longer period of heating (one of the evidence for role of steric hindrance). According to authors, some of the most notable negative results were given by following compounds (Figure 1; Ref. 1 & 2):



                        Negative Idoform Test



                        Yet, Figure 2 listed the compounds, which have given positive results, but have significant steric hindrance (Ref. 1 & 2):



                        Positive Idoform Test



                        Most notably, you may compare compounds 5 (negative; Figure 1) vs compound 11 (positive; Figure 2). They both have similar steric hindrance (aromatic $ceC8-H$ vs $ceC3-H$ is the only difference), yet gives contrary results. Only explanation could be acetic acid group on $ceC1-O$ must be cleaved before iodoform formation on compound 11, but similar cleavage on $ceC2-O$ of compound 5 is restricted due to its position, since it was known that 1-naphthyloxy group (conjugate base of 1-naphthol) is more stable than 2-naphthyloxy group (conjugate base of 2-naphthol). Same can be told about compound 12 giving positive test. Nonetheless, these results clearly shows that only restriction to give idiform is di-ortho-substitution on the substrate (cf., 1-4; Figure 1), which gives the additional resistance to the formation of final tetrahedral intermediate as pointed by Jan. Meanwhile, mono o-, p-, or m-substitution OR di-o,p-, o,m-, or m,m-substitution does not effect the idoform formation. This fact is stated in Ref.1 as:




                        The iodoform reaction is greatly retarded by steric hindrance. The test is negative for all compounds which contain one of the requisite groupings joined to an aryl radical carrying two ortho substituents. As a matter of fact, the reaction is slow, even with pinacolone.




                        Even tri-substituted compounds such as compound 8 give positive idoform test as long as two of substitutions were not in di-ortho positions. In their conclusion, Fuson and Tullock provided a generalization to the reaction (Ref.1):




                        The test is positive for compounds which contain the grouping $ceCH3CO$-, $ceCH2ICO$-, or $ceCHI2CO-$ when, joined to a hydrogen atom or to a carboy atom which does not carry highly activated hydrogen atoms or groups which provide an excessive amount of steric hindrance. The test will, of course, be positive also for any compound which reacts with the reagent to give a derivative containing one of the requisite groupings. Conversely, compounds which contain one of the requisite groupings will give a negative test in case this grouping is destroyed by the hydrolytic action of the reagent before iodination is complete.




                        The reference 3 would give some insight to the formation of sterically hindered idocompounds at $alphaceC$ without giving idoform (formation of the triiodide intermediate as stated in OP's comment). Also read Ref.4 for review on idoform test.




                        References:



                        1. R. C. Fuson, C. W. Tullock, “The Haloform Reaction. XIV. An Improved Iodoform Test,” J. Am. Chem. Soc. 1934, 56(7), 1638–1640 (DOI: 10.1021/ja01322a061).

                        2. M. Večeřa, J. Gasparič, In Detection and Identification of Organic Compounds; Plenum Press: New York, NY, 1971, “Chapter XII: Carbonyl Compounds,” pp. 208-246.

                        3. C. H. Fisher, H. R. Snyder, R. C. Fuson, “The Haloform Reaction. VI. Alpha-Halogen Derivatives of Hindered Ketones,” J. Am. Chem. Soc. 1932, 54(9), 3665–3674 (DOI: 10.1021/ja01348a025).

                        4. R. C. Fuson, B. A. Bull, “The Haloform Reaction,” Chem. Rev. 1934, 15(3), 275–309 (DOI: 10.1021/cr60052a001).





                        share|improve this answer









                        $endgroup$



                        There have been a few answers for this question, which make sense on steric hindrance preventing the idoform formation. However, one thing I wouldn’t agree with is almost everybody’s claim of not having literature evidence to support their theory, thus some may categorize this question as just opinion based and chose to close it (regardless how good it is). To avoid that, I’m going to try to give some acceptable literature evidence to support steric hindrance argument.



                        Because of original idoform test (introduced by Lieben in 1870) is not reliable for water insoluble compounds, Fuson and Tullock provided improved idoform test in 1934 (Ref.1), which use dioxane as a secondary solvent. They have checked new method with wide variety of compounds that have been analyzed previously with Lieben’s method, but had given mixed results, some of which were misleading. For example, in a majority of these cases, the behavior toward hypoiodite has not been previously reported. Such example is pinacolone, which was previously considered as negative to the test, but given positive result with a longer period of heating (one of the evidence for role of steric hindrance). According to authors, some of the most notable negative results were given by following compounds (Figure 1; Ref. 1 & 2):



                        Negative Idoform Test



                        Yet, Figure 2 listed the compounds, which have given positive results, but have significant steric hindrance (Ref. 1 & 2):



                        Positive Idoform Test



                        Most notably, you may compare compounds 5 (negative; Figure 1) vs compound 11 (positive; Figure 2). They both have similar steric hindrance (aromatic $ceC8-H$ vs $ceC3-H$ is the only difference), yet gives contrary results. Only explanation could be acetic acid group on $ceC1-O$ must be cleaved before iodoform formation on compound 11, but similar cleavage on $ceC2-O$ of compound 5 is restricted due to its position, since it was known that 1-naphthyloxy group (conjugate base of 1-naphthol) is more stable than 2-naphthyloxy group (conjugate base of 2-naphthol). Same can be told about compound 12 giving positive test. Nonetheless, these results clearly shows that only restriction to give idiform is di-ortho-substitution on the substrate (cf., 1-4; Figure 1), which gives the additional resistance to the formation of final tetrahedral intermediate as pointed by Jan. Meanwhile, mono o-, p-, or m-substitution OR di-o,p-, o,m-, or m,m-substitution does not effect the idoform formation. This fact is stated in Ref.1 as:




                        The iodoform reaction is greatly retarded by steric hindrance. The test is negative for all compounds which contain one of the requisite groupings joined to an aryl radical carrying two ortho substituents. As a matter of fact, the reaction is slow, even with pinacolone.




                        Even tri-substituted compounds such as compound 8 give positive idoform test as long as two of substitutions were not in di-ortho positions. In their conclusion, Fuson and Tullock provided a generalization to the reaction (Ref.1):




                        The test is positive for compounds which contain the grouping $ceCH3CO$-, $ceCH2ICO$-, or $ceCHI2CO-$ when, joined to a hydrogen atom or to a carboy atom which does not carry highly activated hydrogen atoms or groups which provide an excessive amount of steric hindrance. The test will, of course, be positive also for any compound which reacts with the reagent to give a derivative containing one of the requisite groupings. Conversely, compounds which contain one of the requisite groupings will give a negative test in case this grouping is destroyed by the hydrolytic action of the reagent before iodination is complete.




                        The reference 3 would give some insight to the formation of sterically hindered idocompounds at $alphaceC$ without giving idoform (formation of the triiodide intermediate as stated in OP's comment). Also read Ref.4 for review on idoform test.




                        References:



                        1. R. C. Fuson, C. W. Tullock, “The Haloform Reaction. XIV. An Improved Iodoform Test,” J. Am. Chem. Soc. 1934, 56(7), 1638–1640 (DOI: 10.1021/ja01322a061).

                        2. M. Večeřa, J. Gasparič, In Detection and Identification of Organic Compounds; Plenum Press: New York, NY, 1971, “Chapter XII: Carbonyl Compounds,” pp. 208-246.

                        3. C. H. Fisher, H. R. Snyder, R. C. Fuson, “The Haloform Reaction. VI. Alpha-Halogen Derivatives of Hindered Ketones,” J. Am. Chem. Soc. 1932, 54(9), 3665–3674 (DOI: 10.1021/ja01348a025).

                        4. R. C. Fuson, B. A. Bull, “The Haloform Reaction,” Chem. Rev. 1934, 15(3), 275–309 (DOI: 10.1021/cr60052a001).






                        share|improve this answer












                        share|improve this answer



                        share|improve this answer










                        answered yesterday









                        Mathew MahindaratneMathew Mahindaratne

                        1,56913




                        1,56913











                        • $begingroup$
                          Methyl hexyl ketone doesn't give this test because of steric crowding or is there some other factor at play?
                          $endgroup$
                          – Avnish Kabaj
                          yesterday










                        • $begingroup$
                          @ Avnish Kabaj: According to Ref.1, 2-octanone (methyl hexyl ketone) is positive for their improved method (even methyl cyclohexyl ketone is positive). If you didn't dissolve your water insoluble substrate in dioxane (authors' choice as the best for this test) before testing, it may give misleading results.
                          $endgroup$
                          – Mathew Mahindaratne
                          13 hours ago










                        • $begingroup$
                          Thanks a lot!!!
                          $endgroup$
                          – Avnish Kabaj
                          11 hours ago
















                        • $begingroup$
                          Methyl hexyl ketone doesn't give this test because of steric crowding or is there some other factor at play?
                          $endgroup$
                          – Avnish Kabaj
                          yesterday










                        • $begingroup$
                          @ Avnish Kabaj: According to Ref.1, 2-octanone (methyl hexyl ketone) is positive for their improved method (even methyl cyclohexyl ketone is positive). If you didn't dissolve your water insoluble substrate in dioxane (authors' choice as the best for this test) before testing, it may give misleading results.
                          $endgroup$
                          – Mathew Mahindaratne
                          13 hours ago










                        • $begingroup$
                          Thanks a lot!!!
                          $endgroup$
                          – Avnish Kabaj
                          11 hours ago















                        $begingroup$
                        Methyl hexyl ketone doesn't give this test because of steric crowding or is there some other factor at play?
                        $endgroup$
                        – Avnish Kabaj
                        yesterday




                        $begingroup$
                        Methyl hexyl ketone doesn't give this test because of steric crowding or is there some other factor at play?
                        $endgroup$
                        – Avnish Kabaj
                        yesterday












                        $begingroup$
                        @ Avnish Kabaj: According to Ref.1, 2-octanone (methyl hexyl ketone) is positive for their improved method (even methyl cyclohexyl ketone is positive). If you didn't dissolve your water insoluble substrate in dioxane (authors' choice as the best for this test) before testing, it may give misleading results.
                        $endgroup$
                        – Mathew Mahindaratne
                        13 hours ago




                        $begingroup$
                        @ Avnish Kabaj: According to Ref.1, 2-octanone (methyl hexyl ketone) is positive for their improved method (even methyl cyclohexyl ketone is positive). If you didn't dissolve your water insoluble substrate in dioxane (authors' choice as the best for this test) before testing, it may give misleading results.
                        $endgroup$
                        – Mathew Mahindaratne
                        13 hours ago












                        $begingroup$
                        Thanks a lot!!!
                        $endgroup$
                        – Avnish Kabaj
                        11 hours ago




                        $begingroup$
                        Thanks a lot!!!
                        $endgroup$
                        – Avnish Kabaj
                        11 hours ago











                        3












                        $begingroup$

                        I'd agree with Waylander's 2nd comment - hydrolysis to form the carboxylic acid requires formation of the tetrahedral intermediate (from OH- attack on the keton), which the presence of two ortho substituents on the benzene ring doesnt allow, sterically.



                        A related effect is that methyl 2,6-dimethylbenzoate doesnt undergo basic hydrolysis by the normal BAc2, since it would involve that same tetrahedral intermediate. Instead it goes via teh BAl2 mechanism (i.e. SN2 attack at the methyl group and rate-determining cleavage of the alkyl, rather than acyl bond).






                        share|improve this answer









                        $endgroup$

















                          3












                          $begingroup$

                          I'd agree with Waylander's 2nd comment - hydrolysis to form the carboxylic acid requires formation of the tetrahedral intermediate (from OH- attack on the keton), which the presence of two ortho substituents on the benzene ring doesnt allow, sterically.



                          A related effect is that methyl 2,6-dimethylbenzoate doesnt undergo basic hydrolysis by the normal BAc2, since it would involve that same tetrahedral intermediate. Instead it goes via teh BAl2 mechanism (i.e. SN2 attack at the methyl group and rate-determining cleavage of the alkyl, rather than acyl bond).






                          share|improve this answer









                          $endgroup$















                            3












                            3








                            3





                            $begingroup$

                            I'd agree with Waylander's 2nd comment - hydrolysis to form the carboxylic acid requires formation of the tetrahedral intermediate (from OH- attack on the keton), which the presence of two ortho substituents on the benzene ring doesnt allow, sterically.



                            A related effect is that methyl 2,6-dimethylbenzoate doesnt undergo basic hydrolysis by the normal BAc2, since it would involve that same tetrahedral intermediate. Instead it goes via teh BAl2 mechanism (i.e. SN2 attack at the methyl group and rate-determining cleavage of the alkyl, rather than acyl bond).






                            share|improve this answer









                            $endgroup$



                            I'd agree with Waylander's 2nd comment - hydrolysis to form the carboxylic acid requires formation of the tetrahedral intermediate (from OH- attack on the keton), which the presence of two ortho substituents on the benzene ring doesnt allow, sterically.



                            A related effect is that methyl 2,6-dimethylbenzoate doesnt undergo basic hydrolysis by the normal BAc2, since it would involve that same tetrahedral intermediate. Instead it goes via teh BAl2 mechanism (i.e. SN2 attack at the methyl group and rate-determining cleavage of the alkyl, rather than acyl bond).







                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered yesterday









                            PCKPCK

                            2104




                            2104



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Chemistry Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111511%2forganic-chemistry-iodoform-reaction%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                -carbonyl-compounds, organic-chemistry

                                Popular posts from this blog

                                Mobil Contents History Mobil brands Former Mobil brands Lukoil transaction Mobil UK Mobil Australia Mobil New Zealand Mobil Greece Mobil in Japan Mobil in Canada Mobil Egypt See also References External links Navigation menuwww.mobil.com"Mobil Corporation"the original"Our Houston campus""Business & Finance: Socony-Vacuum Corp.""Popular Mechanics""Lubrite Technologies""Exxon Mobil campus 'clearly happening'""Toledo Blade - Google News Archive Search""The Lion and the Moose - How 2 Executives Pulled off the Biggest Merger Ever""ExxonMobil Press Release""Lubricants""Archived copy"the original"Mobil 1™ and Mobil Super™ motor oil and synthetic motor oil - Mobil™ Motor Oils""Mobil Delvac""Mobil Industrial website""The State of Competition in Gasoline Marketing: The Effects of Refiner Operations at Retail""Mobil Travel Guide to become Forbes Travel Guide""Hotel Rankings: Forbes Merges with Mobil"the original"Jamieson oil industry history""Mobil news""Caltex pumps for control""Watchdog blocks Caltex bid""Exxon Mobil sells service station network""Mobil Oil New Zealand Limited is New Zealand's oldest oil company, with predecessor companies having first established a presence in the country in 1896""ExxonMobil subsidiaries have a business history in New Zealand stretching back more than 120 years. We are involved in petroleum refining and distribution and the marketing of fuels, lubricants and chemical products""Archived copy"the original"Exxon Mobil to Sell Its Japanese Arm for $3.9 Billion""Gas station merger will end Esso and Mobil's long run in Japan""Esso moves to affiliate itself with PC Optimum, no longer Aeroplan, in loyalty point switch""Mobil brand of gas stations to launch in Canada after deal for 213 Loblaws-owned locations""Mobil Nears Completion of Rebranding 200 Loblaw Gas Stations""Learn about ExxonMobil's operations in Egypt""Petrol and Diesel Service Stations in Egypt - Mobil"Official websiteExxon Mobil corporate websiteMobil Industrial official websiteeeeeeeeDA04275022275790-40000 0001 0860 5061n82045453134887257134887257

                                Frič See also Navigation menuinternal link

                                Identify plant with long narrow paired leaves and reddish stems Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is this plant with long sharp leaves? Is it a weed?What is this 3ft high, stalky plant, with mid sized narrow leaves?What is this young shrub with opposite ovate, crenate leaves and reddish stems?What is this plant with large broad serrated leaves?Identify this upright branching weed with long leaves and reddish stemsPlease help me identify this bulbous plant with long, broad leaves and white flowersWhat is this small annual with narrow gray/green leaves and rust colored daisy-type flowers?What is this chilli plant?Does anyone know what type of chilli plant this is?Help identify this plant