Numerical value of Determinant far from what it is supposed to beNumeric values from transformFindRoot for numerical function and how to search more than one rootCan't get a numerical value for this vector operationNumerical value of an expression with a uniform step sizeNumerical evaluation after Normal?Numerical Results with replacement rulesStrange numerical valuesWhat is the acceptable error in numerical calculations?High numerical precision failingHow to extract the minimal value from NMinimize?

What does *dead* mean in *What do you mean, dead?*?

Having the player face themselves after the mid-game

The (Easy) Road to Code

If nine coins are tossed, what is the probability that the number of heads is even?

Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?

What will happen if my luggage gets delayed?

Do Cubics always have one real root?

ESPP--any reason not to go all in?

Translation of 答えを知っている人はいませんでした

Short scifi story where reproductive organs are converted to produce "materials", pregnant protagonist is "found fit" to be a mother

Can't make sense of a paragraph from Lovecraft

What do you call someone who likes to pick fights?

Movie: boy escapes the real world and goes to a fantasy world with big furry trolls

Why restrict private health insurance?

(Codewars) Linked Lists-Sorted Insert

Does an unused member variable take up memory?

Rationale to prefer local variables over instance variables?

Difference between `nmap local-IP-address` and `nmap localhost`

Use Mercury as quenching liquid for swords?

Smooth vector fields on a surface modulo diffeomorphisms

Why is there an extra space when I type "ls" on the Desktop?

Can I take the the bonus-action attack from Two-Weapon Fighting without taking the Attack action?

Can one live in the U.S. and not use a credit card?

Locked Away- What am I?



Numerical value of Determinant far from what it is supposed to be


Numeric values from transformFindRoot for numerical function and how to search more than one rootCan't get a numerical value for this vector operationNumerical value of an expression with a uniform step sizeNumerical evaluation after Normal?Numerical Results with replacement rulesStrange numerical valuesWhat is the acceptable error in numerical calculations?High numerical precision failingHow to extract the minimal value from NMinimize?













1












$begingroup$


I have a large matrix with numerical components and want to set the determinant to zero using the parameter h (see below). Naively, I would have expected that h sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol seems to affects the final outcome for a reason to don't see.



My output of the code below is:



h -> -0.744736 + 4.42008 I

0.0445865 - 0.0285418 I

0.0545654 - 0.114258 I


I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision, but without success.



mat=0.16 - (0.36 + 0.001 I) h - (1.35808 - 
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4, (0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), 0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6;
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol









share|improve this question







New contributor




Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Correction: I get the output 0.118714 - 0.0526506 I (as the second output) and 0.106201 - 0.0979004 I (as the third output); sorry, used a different matrix. But the problem still stands.
    $endgroup$
    – Nils
    2 hours ago















1












$begingroup$


I have a large matrix with numerical components and want to set the determinant to zero using the parameter h (see below). Naively, I would have expected that h sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol seems to affects the final outcome for a reason to don't see.



My output of the code below is:



h -> -0.744736 + 4.42008 I

0.0445865 - 0.0285418 I

0.0545654 - 0.114258 I


I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision, but without success.



mat=0.16 - (0.36 + 0.001 I) h - (1.35808 - 
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4, (0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), 0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6;
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol









share|improve this question







New contributor




Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Correction: I get the output 0.118714 - 0.0526506 I (as the second output) and 0.106201 - 0.0979004 I (as the third output); sorry, used a different matrix. But the problem still stands.
    $endgroup$
    – Nils
    2 hours ago













1












1








1





$begingroup$


I have a large matrix with numerical components and want to set the determinant to zero using the parameter h (see below). Naively, I would have expected that h sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol seems to affects the final outcome for a reason to don't see.



My output of the code below is:



h -> -0.744736 + 4.42008 I

0.0445865 - 0.0285418 I

0.0545654 - 0.114258 I


I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision, but without success.



mat=0.16 - (0.36 + 0.001 I) h - (1.35808 - 
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4, (0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), 0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6;
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol









share|improve this question







New contributor




Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I have a large matrix with numerical components and want to set the determinant to zero using the parameter h (see below). Naively, I would have expected that h sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol seems to affects the final outcome for a reason to don't see.



My output of the code below is:



h -> -0.744736 + 4.42008 I

0.0445865 - 0.0285418 I

0.0545654 - 0.114258 I


I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision, but without success.



mat=0.16 - (0.36 + 0.001 I) h - (1.35808 - 
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4, (0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), 0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6;
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol






numerical-value






share|improve this question







New contributor




Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









NilsNils

61




61




New contributor




Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Nils is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Correction: I get the output 0.118714 - 0.0526506 I (as the second output) and 0.106201 - 0.0979004 I (as the third output); sorry, used a different matrix. But the problem still stands.
    $endgroup$
    – Nils
    2 hours ago
















  • $begingroup$
    Correction: I get the output 0.118714 - 0.0526506 I (as the second output) and 0.106201 - 0.0979004 I (as the third output); sorry, used a different matrix. But the problem still stands.
    $endgroup$
    – Nils
    2 hours ago















$begingroup$
Correction: I get the output 0.118714 - 0.0526506 I (as the second output) and 0.106201 - 0.0979004 I (as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
2 hours ago




$begingroup$
Correction: I get the output 0.118714 - 0.0526506 I (as the second output) and 0.106201 - 0.0979004 I (as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
2 hours ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

As you suspected when you mentioned SetPrecision, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.



If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision (see also $MachinePrecision in the documentation):



det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ

(* Out:
True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True
*)


As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.






share|improve this answer











$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "387"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Nils is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192970%2fnumerical-value-of-determinant-far-from-what-it-is-supposed-to-be%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    As you suspected when you mentioned SetPrecision, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.



    If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision (see also $MachinePrecision in the documentation):



    det = Det[SetPrecision[mat, $MachinePrecision]];
    sol = NSolve[det == 0, h];
    det /. sol // PossibleZeroQ

    (* Out:
    True, True, True, True, True, True, True, True, True, True, True,
    True, True, True, True, True, True, True, True, True, True, True,
    True, True
    *)


    As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.






    share|improve this answer











    $endgroup$

















      3












      $begingroup$

      As you suspected when you mentioned SetPrecision, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.



      If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision (see also $MachinePrecision in the documentation):



      det = Det[SetPrecision[mat, $MachinePrecision]];
      sol = NSolve[det == 0, h];
      det /. sol // PossibleZeroQ

      (* Out:
      True, True, True, True, True, True, True, True, True, True, True,
      True, True, True, True, True, True, True, True, True, True, True,
      True, True
      *)


      As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.






      share|improve this answer











      $endgroup$















        3












        3








        3





        $begingroup$

        As you suspected when you mentioned SetPrecision, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.



        If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision (see also $MachinePrecision in the documentation):



        det = Det[SetPrecision[mat, $MachinePrecision]];
        sol = NSolve[det == 0, h];
        det /. sol // PossibleZeroQ

        (* Out:
        True, True, True, True, True, True, True, True, True, True, True,
        True, True, True, True, True, True, True, True, True, True, True,
        True, True
        *)


        As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.






        share|improve this answer











        $endgroup$



        As you suspected when you mentioned SetPrecision, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.



        If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision (see also $MachinePrecision in the documentation):



        det = Det[SetPrecision[mat, $MachinePrecision]];
        sol = NSolve[det == 0, h];
        det /. sol // PossibleZeroQ

        (* Out:
        True, True, True, True, True, True, True, True, True, True, True,
        True, True, True, True, True, True, True, True, True, True, True,
        True, True
        *)


        As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 2 hours ago

























        answered 2 hours ago









        MarcoBMarcoB

        37.3k556113




        37.3k556113




















            Nils is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Nils is a new contributor. Be nice, and check out our Code of Conduct.












            Nils is a new contributor. Be nice, and check out our Code of Conduct.











            Nils is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192970%2fnumerical-value-of-determinant-far-from-what-it-is-supposed-to-be%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Identify plant with long narrow paired leaves and reddish stems Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is this plant with long sharp leaves? Is it a weed?What is this 3ft high, stalky plant, with mid sized narrow leaves?What is this young shrub with opposite ovate, crenate leaves and reddish stems?What is this plant with large broad serrated leaves?Identify this upright branching weed with long leaves and reddish stemsPlease help me identify this bulbous plant with long, broad leaves and white flowersWhat is this small annual with narrow gray/green leaves and rust colored daisy-type flowers?What is this chilli plant?Does anyone know what type of chilli plant this is?Help identify this plant

            fontconfig warning: “/etc/fonts/fonts.conf”, line 100: unknown “element blank” The 2019 Stack Overflow Developer Survey Results Are In“tar: unrecognized option --warning” during 'apt-get install'How to fix Fontconfig errorHow do I figure out which font file is chosen for a system generic font alias?Why are some apt-get-installed fonts being ignored by fc-list, xfontsel, etc?Reload settings in /etc/fonts/conf.dTaking 30 seconds longer to boot after upgrade from jessie to stretchHow to match multiple font names with a single <match> element?Adding a custom font to fontconfigRemoving fonts from fontconfig <match> resultsBroken fonts after upgrading Firefox ESR to latest Firefox

            Shilpa Shastras Contents Description In painting In carpentry In metallurgy Shilpa Shastra education in ancient India Treatises on Shilpa Shastras See also References Further reading External links Navigation menueOverviewTraditions of the Indian Craftsman251930242ŚilpinŚilpiniTraditions of the Indian CraftsmanThe Technique of Wall Painting in Ancient IndiaEssay on the Architecture of the HindusThe Journal of the Society of Arts10.1007/s11837-998-0378-3The role of India in the diffusion of early culturesTraditions of the Indian CraftsmanAn Encyclopedia of Hindu ArchitectureBibliography of Vastu Shastra Literature, 1834-2009The Technique of Wall Painting in Ancient India4483067Les lapidaires indiens