Why is so much work done on numerical verification of the Riemann Hypothesis?Consequences of the Riemann hypothesisExceptional zeros and Liouville's $lambda$ functionThe Riemann Hypothesis and the Langlands programHow many proofs of the Weil conjectures are there?Quasicrystals and the Riemann HypothesisQuestions on de Branges' work on the Riemann hypothesisLargest known zero of the Riemann Zeta functionNumerical Evidence for Grand Riemann Hypothesis?Riemann Hypothesis and Euler product“Long-standing conjectures in analysis … often turn out to be false”

Why is so much work done on numerical verification of the Riemann Hypothesis?


Consequences of the Riemann hypothesisExceptional zeros and Liouville's $lambda$ functionThe Riemann Hypothesis and the Langlands programHow many proofs of the Weil conjectures are there?Quasicrystals and the Riemann HypothesisQuestions on de Branges' work on the Riemann hypothesisLargest known zero of the Riemann Zeta functionNumerical Evidence for Grand Riemann Hypothesis?Riemann Hypothesis and Euler product“Long-standing conjectures in analysis … often turn out to be false”













26












$begingroup$


I have noticed that there is a huge amount of work which has been done on numerically verifying the Riemann hypothesis for larger and larger non-trivial zeroes.



I don't mean to ask a stupid question, but is there some particular reason that numerical verifications give credence to the truth of the Riemann hypothesis or some way that the computations assist in proving the hypothesis (as we know, historically hypotheses and conjectures have had numerical verification to the point where it seemed that they must be true but the conjectures then turned out to be false, especially hypotheses related to prime numbers and things like that).



Is there something special about this hypothesis which makes this kind of argument more powerful than normal? Would one be able to use these arguments somewhere in the case for a proof of the hypothesis or would they never be used in the proof at all (and yes, until it is proven we cannot know that, sure).










share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    Is there really such a huge amount of (human) work on numerical verifications? I am not aware of that many papers.
    $endgroup$
    – Nell
    Mar 21 at 14:24






  • 19




    $begingroup$
    Regarding your last paragraph: The proof of the Ternary Goldbach Conjecture proceeded in two steps: 1) prove the result for all numbers bigger than a certain, known number $n$, and 2) use a computer to verify the result for all numbers less than $n$. It is conceivable that a similar method of proof would work for the Riemann hypothesis.
    $endgroup$
    – user1729
    Mar 21 at 14:26







  • 45




    $begingroup$
    The Riemann hypothesis may be false. Even if one feels that the chance that RH is false is very small, the expected payoff for finding a counterexample is still large.
    $endgroup$
    – Richard Stanley
    Mar 21 at 15:20






  • 1




    $begingroup$
    Note there is some computable $C$ such that $psi(n) =1_x > 1 log lfloor exp(n-sum_ < Cn frac(n+1/2)^rhorho)+frac12(1- log 2pi-log(1-(n+1/2)^-2))rfloor $. The RH aims at replacing $Cn$ by $C' n^1/2 log^3 n$. From the small non-trivial zeros you know $psi(n)$ for $n$ small, and from $psi(n)$ for $n$ small and the knowledge that the RH is true for $Im(s)$ small, you know the approximate imaginary part of the non-trivial zeros.
    $endgroup$
    – reuns
    Mar 21 at 17:04







  • 6




    $begingroup$
    Zagier famously gave 300 million zeros as the level of experiment needed to convince him, and when computations hit 200 million, the computationalists were cajoled to extend this so that a bet with Bombieri could be won. maths-people.anu.edu.au/~brent/pub/pub081.html
    $endgroup$
    – literature-searcher
    Mar 21 at 18:14















26












$begingroup$


I have noticed that there is a huge amount of work which has been done on numerically verifying the Riemann hypothesis for larger and larger non-trivial zeroes.



I don't mean to ask a stupid question, but is there some particular reason that numerical verifications give credence to the truth of the Riemann hypothesis or some way that the computations assist in proving the hypothesis (as we know, historically hypotheses and conjectures have had numerical verification to the point where it seemed that they must be true but the conjectures then turned out to be false, especially hypotheses related to prime numbers and things like that).



Is there something special about this hypothesis which makes this kind of argument more powerful than normal? Would one be able to use these arguments somewhere in the case for a proof of the hypothesis or would they never be used in the proof at all (and yes, until it is proven we cannot know that, sure).










share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    Is there really such a huge amount of (human) work on numerical verifications? I am not aware of that many papers.
    $endgroup$
    – Nell
    Mar 21 at 14:24






  • 19




    $begingroup$
    Regarding your last paragraph: The proof of the Ternary Goldbach Conjecture proceeded in two steps: 1) prove the result for all numbers bigger than a certain, known number $n$, and 2) use a computer to verify the result for all numbers less than $n$. It is conceivable that a similar method of proof would work for the Riemann hypothesis.
    $endgroup$
    – user1729
    Mar 21 at 14:26







  • 45




    $begingroup$
    The Riemann hypothesis may be false. Even if one feels that the chance that RH is false is very small, the expected payoff for finding a counterexample is still large.
    $endgroup$
    – Richard Stanley
    Mar 21 at 15:20






  • 1




    $begingroup$
    Note there is some computable $C$ such that $psi(n) =1_x > 1 log lfloor exp(n-sum_ < Cn frac(n+1/2)^rhorho)+frac12(1- log 2pi-log(1-(n+1/2)^-2))rfloor $. The RH aims at replacing $Cn$ by $C' n^1/2 log^3 n$. From the small non-trivial zeros you know $psi(n)$ for $n$ small, and from $psi(n)$ for $n$ small and the knowledge that the RH is true for $Im(s)$ small, you know the approximate imaginary part of the non-trivial zeros.
    $endgroup$
    – reuns
    Mar 21 at 17:04







  • 6




    $begingroup$
    Zagier famously gave 300 million zeros as the level of experiment needed to convince him, and when computations hit 200 million, the computationalists were cajoled to extend this so that a bet with Bombieri could be won. maths-people.anu.edu.au/~brent/pub/pub081.html
    $endgroup$
    – literature-searcher
    Mar 21 at 18:14













26












26








26


7



$begingroup$


I have noticed that there is a huge amount of work which has been done on numerically verifying the Riemann hypothesis for larger and larger non-trivial zeroes.



I don't mean to ask a stupid question, but is there some particular reason that numerical verifications give credence to the truth of the Riemann hypothesis or some way that the computations assist in proving the hypothesis (as we know, historically hypotheses and conjectures have had numerical verification to the point where it seemed that they must be true but the conjectures then turned out to be false, especially hypotheses related to prime numbers and things like that).



Is there something special about this hypothesis which makes this kind of argument more powerful than normal? Would one be able to use these arguments somewhere in the case for a proof of the hypothesis or would they never be used in the proof at all (and yes, until it is proven we cannot know that, sure).










share|cite|improve this question











$endgroup$




I have noticed that there is a huge amount of work which has been done on numerically verifying the Riemann hypothesis for larger and larger non-trivial zeroes.



I don't mean to ask a stupid question, but is there some particular reason that numerical verifications give credence to the truth of the Riemann hypothesis or some way that the computations assist in proving the hypothesis (as we know, historically hypotheses and conjectures have had numerical verification to the point where it seemed that they must be true but the conjectures then turned out to be false, especially hypotheses related to prime numbers and things like that).



Is there something special about this hypothesis which makes this kind of argument more powerful than normal? Would one be able to use these arguments somewhere in the case for a proof of the hypothesis or would they never be used in the proof at all (and yes, until it is proven we cannot know that, sure).







nt.number-theory analytic-number-theory riemann-zeta-function riemann-hypothesis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Rafael Marazuela

32




32










asked Mar 21 at 13:52









TomTom

410311




410311







  • 5




    $begingroup$
    Is there really such a huge amount of (human) work on numerical verifications? I am not aware of that many papers.
    $endgroup$
    – Nell
    Mar 21 at 14:24






  • 19




    $begingroup$
    Regarding your last paragraph: The proof of the Ternary Goldbach Conjecture proceeded in two steps: 1) prove the result for all numbers bigger than a certain, known number $n$, and 2) use a computer to verify the result for all numbers less than $n$. It is conceivable that a similar method of proof would work for the Riemann hypothesis.
    $endgroup$
    – user1729
    Mar 21 at 14:26







  • 45




    $begingroup$
    The Riemann hypothesis may be false. Even if one feels that the chance that RH is false is very small, the expected payoff for finding a counterexample is still large.
    $endgroup$
    – Richard Stanley
    Mar 21 at 15:20






  • 1




    $begingroup$
    Note there is some computable $C$ such that $psi(n) =1_x > 1 log lfloor exp(n-sum_ < Cn frac(n+1/2)^rhorho)+frac12(1- log 2pi-log(1-(n+1/2)^-2))rfloor $. The RH aims at replacing $Cn$ by $C' n^1/2 log^3 n$. From the small non-trivial zeros you know $psi(n)$ for $n$ small, and from $psi(n)$ for $n$ small and the knowledge that the RH is true for $Im(s)$ small, you know the approximate imaginary part of the non-trivial zeros.
    $endgroup$
    – reuns
    Mar 21 at 17:04







  • 6




    $begingroup$
    Zagier famously gave 300 million zeros as the level of experiment needed to convince him, and when computations hit 200 million, the computationalists were cajoled to extend this so that a bet with Bombieri could be won. maths-people.anu.edu.au/~brent/pub/pub081.html
    $endgroup$
    – literature-searcher
    Mar 21 at 18:14












  • 5




    $begingroup$
    Is there really such a huge amount of (human) work on numerical verifications? I am not aware of that many papers.
    $endgroup$
    – Nell
    Mar 21 at 14:24






  • 19




    $begingroup$
    Regarding your last paragraph: The proof of the Ternary Goldbach Conjecture proceeded in two steps: 1) prove the result for all numbers bigger than a certain, known number $n$, and 2) use a computer to verify the result for all numbers less than $n$. It is conceivable that a similar method of proof would work for the Riemann hypothesis.
    $endgroup$
    – user1729
    Mar 21 at 14:26







  • 45




    $begingroup$
    The Riemann hypothesis may be false. Even if one feels that the chance that RH is false is very small, the expected payoff for finding a counterexample is still large.
    $endgroup$
    – Richard Stanley
    Mar 21 at 15:20






  • 1




    $begingroup$
    Note there is some computable $C$ such that $psi(n) =1_x > 1 log lfloor exp(n-sum_ < Cn frac(n+1/2)^rhorho)+frac12(1- log 2pi-log(1-(n+1/2)^-2))rfloor $. The RH aims at replacing $Cn$ by $C' n^1/2 log^3 n$. From the small non-trivial zeros you know $psi(n)$ for $n$ small, and from $psi(n)$ for $n$ small and the knowledge that the RH is true for $Im(s)$ small, you know the approximate imaginary part of the non-trivial zeros.
    $endgroup$
    – reuns
    Mar 21 at 17:04







  • 6




    $begingroup$
    Zagier famously gave 300 million zeros as the level of experiment needed to convince him, and when computations hit 200 million, the computationalists were cajoled to extend this so that a bet with Bombieri could be won. maths-people.anu.edu.au/~brent/pub/pub081.html
    $endgroup$
    – literature-searcher
    Mar 21 at 18:14







5




5




$begingroup$
Is there really such a huge amount of (human) work on numerical verifications? I am not aware of that many papers.
$endgroup$
– Nell
Mar 21 at 14:24




$begingroup$
Is there really such a huge amount of (human) work on numerical verifications? I am not aware of that many papers.
$endgroup$
– Nell
Mar 21 at 14:24




19




19




$begingroup$
Regarding your last paragraph: The proof of the Ternary Goldbach Conjecture proceeded in two steps: 1) prove the result for all numbers bigger than a certain, known number $n$, and 2) use a computer to verify the result for all numbers less than $n$. It is conceivable that a similar method of proof would work for the Riemann hypothesis.
$endgroup$
– user1729
Mar 21 at 14:26





$begingroup$
Regarding your last paragraph: The proof of the Ternary Goldbach Conjecture proceeded in two steps: 1) prove the result for all numbers bigger than a certain, known number $n$, and 2) use a computer to verify the result for all numbers less than $n$. It is conceivable that a similar method of proof would work for the Riemann hypothesis.
$endgroup$
– user1729
Mar 21 at 14:26





45




45




$begingroup$
The Riemann hypothesis may be false. Even if one feels that the chance that RH is false is very small, the expected payoff for finding a counterexample is still large.
$endgroup$
– Richard Stanley
Mar 21 at 15:20




$begingroup$
The Riemann hypothesis may be false. Even if one feels that the chance that RH is false is very small, the expected payoff for finding a counterexample is still large.
$endgroup$
– Richard Stanley
Mar 21 at 15:20




1




1




$begingroup$
Note there is some computable $C$ such that $psi(n) =1_x > 1 log lfloor exp(n-sum_ < Cn frac(n+1/2)^rhorho)+frac12(1- log 2pi-log(1-(n+1/2)^-2))rfloor $. The RH aims at replacing $Cn$ by $C' n^1/2 log^3 n$. From the small non-trivial zeros you know $psi(n)$ for $n$ small, and from $psi(n)$ for $n$ small and the knowledge that the RH is true for $Im(s)$ small, you know the approximate imaginary part of the non-trivial zeros.
$endgroup$
– reuns
Mar 21 at 17:04





$begingroup$
Note there is some computable $C$ such that $psi(n) =1_x > 1 log lfloor exp(n-sum_ < Cn frac(n+1/2)^rhorho)+frac12(1- log 2pi-log(1-(n+1/2)^-2))rfloor $. The RH aims at replacing $Cn$ by $C' n^1/2 log^3 n$. From the small non-trivial zeros you know $psi(n)$ for $n$ small, and from $psi(n)$ for $n$ small and the knowledge that the RH is true for $Im(s)$ small, you know the approximate imaginary part of the non-trivial zeros.
$endgroup$
– reuns
Mar 21 at 17:04





6




6




$begingroup$
Zagier famously gave 300 million zeros as the level of experiment needed to convince him, and when computations hit 200 million, the computationalists were cajoled to extend this so that a bet with Bombieri could be won. maths-people.anu.edu.au/~brent/pub/pub081.html
$endgroup$
– literature-searcher
Mar 21 at 18:14




$begingroup$
Zagier famously gave 300 million zeros as the level of experiment needed to convince him, and when computations hit 200 million, the computationalists were cajoled to extend this so that a bet with Bombieri could be won. maths-people.anu.edu.au/~brent/pub/pub081.html
$endgroup$
– literature-searcher
Mar 21 at 18:14










3 Answers
3






active

oldest

votes


















35












$begingroup$

People are interested in computing the zeros of $zeta(s)$ and related functions not only as numerical support for RH. Going beyond RH, there are conjectures about the vertical distribution of the nontrivial zeros (after "unfolding" them to have average spacing 1, assuming they are on a vertical line to begin with).



Odlyzko found striking numerical support for such conjectures by making calculations with zeros very high up the critical line: hundreds of millions of zeros around the $10^20$-th zero. See the Katz--Sarnak article here and look at the picture on the second and fourth pages. These vertical distribution conjectures do not look convincing by working with low-lying zeros.



If you're not interested in considering large-scale statistics of the zero locations, there is a small refinement of RH worth keeping in mind since the calculations supporting RH are based on it: the (nontrivial) zeros of $zeta(s)$ are expected to be simple zeros. This has always turned out to be the case in numerical work, and the methods used to confirm all zeros in a region lie exactly on -- not just nearby -- the critical line would not work in their current form if a multiple zero were found. The existence of a multiple zero on the critical line would of course not violate RH, but if anyone did detect one because a zero-counting process doesn't work out (say, suggesting there's a double zero somewhere high up the critical line), I don't know if there is an algorithm waiting in the wings that could be used to prove a double zero exists if a computer suggests a possible location. I think it is more realistic to expect a computer to detect a multiple zero than to detect a counterexample to RH. Of course I really don't expect a computer to detect either such phenomena, but if I had to choose between them...



From Wikipedia's table on its RH page, the latest exhaustive numerical checks on RH (all zeros up to some height) go up to around the $10^13$-th zero. There are other conjectures that have been tested numerically far beyond $10^13$ data points, e.g., the $3x+1$ problem has been checked for all positive integers up to $80 cdot 2^60 approx 10^19$, Goldbach's conjecture has been checked for the first $2 cdot 10^18$ even numbers greater than $2$, and the number of twin prime pairs found so far is over $8cdot 10^14$. With such examples in mind, I would not agree that the numerical testing of RH is out of line with how far people are willing to let their computers run to test other open problems.






share|cite|improve this answer










New contributor




user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    One caveat: it is my impression that the check that goes the farthest ($10^13$ zeros) is more in the nature of an empirical check, rather than a rigorous proof that all of the first $10^13$ zeros do lie on the critical line. It's still valid experimental evidence towards RH, but I would not use this particular verification in a proof.
    $endgroup$
    – Nell
    Mar 21 at 17:49







  • 1




    $begingroup$
    @Nell I looked at the paper at numbers.computation.free.fr/Constants/Miscellaneous/… and you're correct: while they did a confirmation of the main calculation by adjusting some free parameters and redoing it again to find the same number of zeros in various locations as they found the first time, they admit at the end of Section 1.1 that the only way to verify the calculation is to do it all a second time (unlike integer factorization, for which success can be checked by direct multiplication). They say their work is not a strict mathematical proof.
    $endgroup$
    – user1728
    Mar 21 at 20:57






  • 1




    $begingroup$
    @user1728, are you an alias of user1729 (who also commented above)?
    $endgroup$
    – Alex M.
    2 days ago


















18












$begingroup$

I would add a few more comments to the very pertinent ones above:



1: We are lucky to have two things that work in our favor - an excellent representation of $zeta$ on the critical line by a simple real function (simple up to a good approximation, approximation usually called the Riemann Siegel formula) - the Hardy function, $Z(t)$ - multiplied by a function of absolute value $1$, so critical zeros of a very complicated transcendental complex function ($zeta(s)$) are also zeros of a much simpler real function, $Z(t)$, zeros that can be determined to high accuracy.



2: We are also lucky to have a very accurate formula (Riemann-von Mangoldt) that determines with perfect accuracy the number of zeros in the critical strip up to a fixed bound on the imaginary part, so putting 1 and 2 together we conclude that RH is true up to high imaginary part bounds by computing the zeros on the critical line with 1 and showing that there are these many zeros in the full strip up to that level by 2:



3: There is a duality between $zeta$ non-trivial zeroes and primes that allows to at least try investigate some problems about primes using $zeta$ zeroes instead, so having a huge database of such could be quite useful at least potentially






share|cite|improve this answer









$endgroup$








  • 3




    $begingroup$
    I'd say the point is not just that $Z(t)$ can be expressed somewhat more simply, but that it is in general simple to prove that a real function has a zero in a small interval - if the sign changes, there has to be a zero in there.
    $endgroup$
    – Nell
    Mar 21 at 16:30






  • 6




    $begingroup$
    Re 3: In particular, the higher that RH has been verified, the better explicit numerical bounds one can get on error terms for prime-counting functions.
    $endgroup$
    – Greg Martin
    Mar 21 at 17:44


















14












$begingroup$

Part of the point is that such numerical checks can be demonstrations of the efficiency of this or that new algorithm. However, it is also the case that a finite check (that all the zeroes of $zeta(s)$ with $Im(s)leq T$, say, lie on the critical line) can be used in actual proofs of other statements, provided that it is rigorous.



For that matter, computing the first $n$ zeroes of the Riemann zeta function can be used to disprove another conjecture. Take, for instance,



Odlyzko, A. M., & te Riele, H. J. J. (1985). Disproof of the Mertens conjecture. Journal für die reine und angewandte Mathematik, 357, 138-160.






share|cite|improve this answer










New contributor




Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    The reference to the work of Odlyzko and the Riele is a bit misleading - they only used the first 2000 zeros, but they needed to compute them to very high precision, 100 digits.
    $endgroup$
    – Stopple
    Mar 22 at 23:44










  • $begingroup$
    I didn't say $n$ was all that high...
    $endgroup$
    – Nell
    Mar 23 at 1:03










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325963%2fwhy-is-so-much-work-done-on-numerical-verification-of-the-riemann-hypothesis%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









35












$begingroup$

People are interested in computing the zeros of $zeta(s)$ and related functions not only as numerical support for RH. Going beyond RH, there are conjectures about the vertical distribution of the nontrivial zeros (after "unfolding" them to have average spacing 1, assuming they are on a vertical line to begin with).



Odlyzko found striking numerical support for such conjectures by making calculations with zeros very high up the critical line: hundreds of millions of zeros around the $10^20$-th zero. See the Katz--Sarnak article here and look at the picture on the second and fourth pages. These vertical distribution conjectures do not look convincing by working with low-lying zeros.



If you're not interested in considering large-scale statistics of the zero locations, there is a small refinement of RH worth keeping in mind since the calculations supporting RH are based on it: the (nontrivial) zeros of $zeta(s)$ are expected to be simple zeros. This has always turned out to be the case in numerical work, and the methods used to confirm all zeros in a region lie exactly on -- not just nearby -- the critical line would not work in their current form if a multiple zero were found. The existence of a multiple zero on the critical line would of course not violate RH, but if anyone did detect one because a zero-counting process doesn't work out (say, suggesting there's a double zero somewhere high up the critical line), I don't know if there is an algorithm waiting in the wings that could be used to prove a double zero exists if a computer suggests a possible location. I think it is more realistic to expect a computer to detect a multiple zero than to detect a counterexample to RH. Of course I really don't expect a computer to detect either such phenomena, but if I had to choose between them...



From Wikipedia's table on its RH page, the latest exhaustive numerical checks on RH (all zeros up to some height) go up to around the $10^13$-th zero. There are other conjectures that have been tested numerically far beyond $10^13$ data points, e.g., the $3x+1$ problem has been checked for all positive integers up to $80 cdot 2^60 approx 10^19$, Goldbach's conjecture has been checked for the first $2 cdot 10^18$ even numbers greater than $2$, and the number of twin prime pairs found so far is over $8cdot 10^14$. With such examples in mind, I would not agree that the numerical testing of RH is out of line with how far people are willing to let their computers run to test other open problems.






share|cite|improve this answer










New contributor




user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    One caveat: it is my impression that the check that goes the farthest ($10^13$ zeros) is more in the nature of an empirical check, rather than a rigorous proof that all of the first $10^13$ zeros do lie on the critical line. It's still valid experimental evidence towards RH, but I would not use this particular verification in a proof.
    $endgroup$
    – Nell
    Mar 21 at 17:49







  • 1




    $begingroup$
    @Nell I looked at the paper at numbers.computation.free.fr/Constants/Miscellaneous/… and you're correct: while they did a confirmation of the main calculation by adjusting some free parameters and redoing it again to find the same number of zeros in various locations as they found the first time, they admit at the end of Section 1.1 that the only way to verify the calculation is to do it all a second time (unlike integer factorization, for which success can be checked by direct multiplication). They say their work is not a strict mathematical proof.
    $endgroup$
    – user1728
    Mar 21 at 20:57






  • 1




    $begingroup$
    @user1728, are you an alias of user1729 (who also commented above)?
    $endgroup$
    – Alex M.
    2 days ago















35












$begingroup$

People are interested in computing the zeros of $zeta(s)$ and related functions not only as numerical support for RH. Going beyond RH, there are conjectures about the vertical distribution of the nontrivial zeros (after "unfolding" them to have average spacing 1, assuming they are on a vertical line to begin with).



Odlyzko found striking numerical support for such conjectures by making calculations with zeros very high up the critical line: hundreds of millions of zeros around the $10^20$-th zero. See the Katz--Sarnak article here and look at the picture on the second and fourth pages. These vertical distribution conjectures do not look convincing by working with low-lying zeros.



If you're not interested in considering large-scale statistics of the zero locations, there is a small refinement of RH worth keeping in mind since the calculations supporting RH are based on it: the (nontrivial) zeros of $zeta(s)$ are expected to be simple zeros. This has always turned out to be the case in numerical work, and the methods used to confirm all zeros in a region lie exactly on -- not just nearby -- the critical line would not work in their current form if a multiple zero were found. The existence of a multiple zero on the critical line would of course not violate RH, but if anyone did detect one because a zero-counting process doesn't work out (say, suggesting there's a double zero somewhere high up the critical line), I don't know if there is an algorithm waiting in the wings that could be used to prove a double zero exists if a computer suggests a possible location. I think it is more realistic to expect a computer to detect a multiple zero than to detect a counterexample to RH. Of course I really don't expect a computer to detect either such phenomena, but if I had to choose between them...



From Wikipedia's table on its RH page, the latest exhaustive numerical checks on RH (all zeros up to some height) go up to around the $10^13$-th zero. There are other conjectures that have been tested numerically far beyond $10^13$ data points, e.g., the $3x+1$ problem has been checked for all positive integers up to $80 cdot 2^60 approx 10^19$, Goldbach's conjecture has been checked for the first $2 cdot 10^18$ even numbers greater than $2$, and the number of twin prime pairs found so far is over $8cdot 10^14$. With such examples in mind, I would not agree that the numerical testing of RH is out of line with how far people are willing to let their computers run to test other open problems.






share|cite|improve this answer










New contributor




user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    One caveat: it is my impression that the check that goes the farthest ($10^13$ zeros) is more in the nature of an empirical check, rather than a rigorous proof that all of the first $10^13$ zeros do lie on the critical line. It's still valid experimental evidence towards RH, but I would not use this particular verification in a proof.
    $endgroup$
    – Nell
    Mar 21 at 17:49







  • 1




    $begingroup$
    @Nell I looked at the paper at numbers.computation.free.fr/Constants/Miscellaneous/… and you're correct: while they did a confirmation of the main calculation by adjusting some free parameters and redoing it again to find the same number of zeros in various locations as they found the first time, they admit at the end of Section 1.1 that the only way to verify the calculation is to do it all a second time (unlike integer factorization, for which success can be checked by direct multiplication). They say their work is not a strict mathematical proof.
    $endgroup$
    – user1728
    Mar 21 at 20:57






  • 1




    $begingroup$
    @user1728, are you an alias of user1729 (who also commented above)?
    $endgroup$
    – Alex M.
    2 days ago













35












35








35





$begingroup$

People are interested in computing the zeros of $zeta(s)$ and related functions not only as numerical support for RH. Going beyond RH, there are conjectures about the vertical distribution of the nontrivial zeros (after "unfolding" them to have average spacing 1, assuming they are on a vertical line to begin with).



Odlyzko found striking numerical support for such conjectures by making calculations with zeros very high up the critical line: hundreds of millions of zeros around the $10^20$-th zero. See the Katz--Sarnak article here and look at the picture on the second and fourth pages. These vertical distribution conjectures do not look convincing by working with low-lying zeros.



If you're not interested in considering large-scale statistics of the zero locations, there is a small refinement of RH worth keeping in mind since the calculations supporting RH are based on it: the (nontrivial) zeros of $zeta(s)$ are expected to be simple zeros. This has always turned out to be the case in numerical work, and the methods used to confirm all zeros in a region lie exactly on -- not just nearby -- the critical line would not work in their current form if a multiple zero were found. The existence of a multiple zero on the critical line would of course not violate RH, but if anyone did detect one because a zero-counting process doesn't work out (say, suggesting there's a double zero somewhere high up the critical line), I don't know if there is an algorithm waiting in the wings that could be used to prove a double zero exists if a computer suggests a possible location. I think it is more realistic to expect a computer to detect a multiple zero than to detect a counterexample to RH. Of course I really don't expect a computer to detect either such phenomena, but if I had to choose between them...



From Wikipedia's table on its RH page, the latest exhaustive numerical checks on RH (all zeros up to some height) go up to around the $10^13$-th zero. There are other conjectures that have been tested numerically far beyond $10^13$ data points, e.g., the $3x+1$ problem has been checked for all positive integers up to $80 cdot 2^60 approx 10^19$, Goldbach's conjecture has been checked for the first $2 cdot 10^18$ even numbers greater than $2$, and the number of twin prime pairs found so far is over $8cdot 10^14$. With such examples in mind, I would not agree that the numerical testing of RH is out of line with how far people are willing to let their computers run to test other open problems.






share|cite|improve this answer










New contributor




user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



People are interested in computing the zeros of $zeta(s)$ and related functions not only as numerical support for RH. Going beyond RH, there are conjectures about the vertical distribution of the nontrivial zeros (after "unfolding" them to have average spacing 1, assuming they are on a vertical line to begin with).



Odlyzko found striking numerical support for such conjectures by making calculations with zeros very high up the critical line: hundreds of millions of zeros around the $10^20$-th zero. See the Katz--Sarnak article here and look at the picture on the second and fourth pages. These vertical distribution conjectures do not look convincing by working with low-lying zeros.



If you're not interested in considering large-scale statistics of the zero locations, there is a small refinement of RH worth keeping in mind since the calculations supporting RH are based on it: the (nontrivial) zeros of $zeta(s)$ are expected to be simple zeros. This has always turned out to be the case in numerical work, and the methods used to confirm all zeros in a region lie exactly on -- not just nearby -- the critical line would not work in their current form if a multiple zero were found. The existence of a multiple zero on the critical line would of course not violate RH, but if anyone did detect one because a zero-counting process doesn't work out (say, suggesting there's a double zero somewhere high up the critical line), I don't know if there is an algorithm waiting in the wings that could be used to prove a double zero exists if a computer suggests a possible location. I think it is more realistic to expect a computer to detect a multiple zero than to detect a counterexample to RH. Of course I really don't expect a computer to detect either such phenomena, but if I had to choose between them...



From Wikipedia's table on its RH page, the latest exhaustive numerical checks on RH (all zeros up to some height) go up to around the $10^13$-th zero. There are other conjectures that have been tested numerically far beyond $10^13$ data points, e.g., the $3x+1$ problem has been checked for all positive integers up to $80 cdot 2^60 approx 10^19$, Goldbach's conjecture has been checked for the first $2 cdot 10^18$ even numbers greater than $2$, and the number of twin prime pairs found so far is over $8cdot 10^14$. With such examples in mind, I would not agree that the numerical testing of RH is out of line with how far people are willing to let their computers run to test other open problems.







share|cite|improve this answer










New contributor




user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this answer



share|cite|improve this answer








edited Mar 21 at 16:45





















New contributor




user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered Mar 21 at 16:14









user1728user1728

36614




36614




New contributor




user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






user1728 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    One caveat: it is my impression that the check that goes the farthest ($10^13$ zeros) is more in the nature of an empirical check, rather than a rigorous proof that all of the first $10^13$ zeros do lie on the critical line. It's still valid experimental evidence towards RH, but I would not use this particular verification in a proof.
    $endgroup$
    – Nell
    Mar 21 at 17:49







  • 1




    $begingroup$
    @Nell I looked at the paper at numbers.computation.free.fr/Constants/Miscellaneous/… and you're correct: while they did a confirmation of the main calculation by adjusting some free parameters and redoing it again to find the same number of zeros in various locations as they found the first time, they admit at the end of Section 1.1 that the only way to verify the calculation is to do it all a second time (unlike integer factorization, for which success can be checked by direct multiplication). They say their work is not a strict mathematical proof.
    $endgroup$
    – user1728
    Mar 21 at 20:57






  • 1




    $begingroup$
    @user1728, are you an alias of user1729 (who also commented above)?
    $endgroup$
    – Alex M.
    2 days ago
















  • $begingroup$
    One caveat: it is my impression that the check that goes the farthest ($10^13$ zeros) is more in the nature of an empirical check, rather than a rigorous proof that all of the first $10^13$ zeros do lie on the critical line. It's still valid experimental evidence towards RH, but I would not use this particular verification in a proof.
    $endgroup$
    – Nell
    Mar 21 at 17:49







  • 1




    $begingroup$
    @Nell I looked at the paper at numbers.computation.free.fr/Constants/Miscellaneous/… and you're correct: while they did a confirmation of the main calculation by adjusting some free parameters and redoing it again to find the same number of zeros in various locations as they found the first time, they admit at the end of Section 1.1 that the only way to verify the calculation is to do it all a second time (unlike integer factorization, for which success can be checked by direct multiplication). They say their work is not a strict mathematical proof.
    $endgroup$
    – user1728
    Mar 21 at 20:57






  • 1




    $begingroup$
    @user1728, are you an alias of user1729 (who also commented above)?
    $endgroup$
    – Alex M.
    2 days ago















$begingroup$
One caveat: it is my impression that the check that goes the farthest ($10^13$ zeros) is more in the nature of an empirical check, rather than a rigorous proof that all of the first $10^13$ zeros do lie on the critical line. It's still valid experimental evidence towards RH, but I would not use this particular verification in a proof.
$endgroup$
– Nell
Mar 21 at 17:49





$begingroup$
One caveat: it is my impression that the check that goes the farthest ($10^13$ zeros) is more in the nature of an empirical check, rather than a rigorous proof that all of the first $10^13$ zeros do lie on the critical line. It's still valid experimental evidence towards RH, but I would not use this particular verification in a proof.
$endgroup$
– Nell
Mar 21 at 17:49





1




1




$begingroup$
@Nell I looked at the paper at numbers.computation.free.fr/Constants/Miscellaneous/… and you're correct: while they did a confirmation of the main calculation by adjusting some free parameters and redoing it again to find the same number of zeros in various locations as they found the first time, they admit at the end of Section 1.1 that the only way to verify the calculation is to do it all a second time (unlike integer factorization, for which success can be checked by direct multiplication). They say their work is not a strict mathematical proof.
$endgroup$
– user1728
Mar 21 at 20:57




$begingroup$
@Nell I looked at the paper at numbers.computation.free.fr/Constants/Miscellaneous/… and you're correct: while they did a confirmation of the main calculation by adjusting some free parameters and redoing it again to find the same number of zeros in various locations as they found the first time, they admit at the end of Section 1.1 that the only way to verify the calculation is to do it all a second time (unlike integer factorization, for which success can be checked by direct multiplication). They say their work is not a strict mathematical proof.
$endgroup$
– user1728
Mar 21 at 20:57




1




1




$begingroup$
@user1728, are you an alias of user1729 (who also commented above)?
$endgroup$
– Alex M.
2 days ago




$begingroup$
@user1728, are you an alias of user1729 (who also commented above)?
$endgroup$
– Alex M.
2 days ago











18












$begingroup$

I would add a few more comments to the very pertinent ones above:



1: We are lucky to have two things that work in our favor - an excellent representation of $zeta$ on the critical line by a simple real function (simple up to a good approximation, approximation usually called the Riemann Siegel formula) - the Hardy function, $Z(t)$ - multiplied by a function of absolute value $1$, so critical zeros of a very complicated transcendental complex function ($zeta(s)$) are also zeros of a much simpler real function, $Z(t)$, zeros that can be determined to high accuracy.



2: We are also lucky to have a very accurate formula (Riemann-von Mangoldt) that determines with perfect accuracy the number of zeros in the critical strip up to a fixed bound on the imaginary part, so putting 1 and 2 together we conclude that RH is true up to high imaginary part bounds by computing the zeros on the critical line with 1 and showing that there are these many zeros in the full strip up to that level by 2:



3: There is a duality between $zeta$ non-trivial zeroes and primes that allows to at least try investigate some problems about primes using $zeta$ zeroes instead, so having a huge database of such could be quite useful at least potentially






share|cite|improve this answer









$endgroup$








  • 3




    $begingroup$
    I'd say the point is not just that $Z(t)$ can be expressed somewhat more simply, but that it is in general simple to prove that a real function has a zero in a small interval - if the sign changes, there has to be a zero in there.
    $endgroup$
    – Nell
    Mar 21 at 16:30






  • 6




    $begingroup$
    Re 3: In particular, the higher that RH has been verified, the better explicit numerical bounds one can get on error terms for prime-counting functions.
    $endgroup$
    – Greg Martin
    Mar 21 at 17:44















18












$begingroup$

I would add a few more comments to the very pertinent ones above:



1: We are lucky to have two things that work in our favor - an excellent representation of $zeta$ on the critical line by a simple real function (simple up to a good approximation, approximation usually called the Riemann Siegel formula) - the Hardy function, $Z(t)$ - multiplied by a function of absolute value $1$, so critical zeros of a very complicated transcendental complex function ($zeta(s)$) are also zeros of a much simpler real function, $Z(t)$, zeros that can be determined to high accuracy.



2: We are also lucky to have a very accurate formula (Riemann-von Mangoldt) that determines with perfect accuracy the number of zeros in the critical strip up to a fixed bound on the imaginary part, so putting 1 and 2 together we conclude that RH is true up to high imaginary part bounds by computing the zeros on the critical line with 1 and showing that there are these many zeros in the full strip up to that level by 2:



3: There is a duality between $zeta$ non-trivial zeroes and primes that allows to at least try investigate some problems about primes using $zeta$ zeroes instead, so having a huge database of such could be quite useful at least potentially






share|cite|improve this answer









$endgroup$








  • 3




    $begingroup$
    I'd say the point is not just that $Z(t)$ can be expressed somewhat more simply, but that it is in general simple to prove that a real function has a zero in a small interval - if the sign changes, there has to be a zero in there.
    $endgroup$
    – Nell
    Mar 21 at 16:30






  • 6




    $begingroup$
    Re 3: In particular, the higher that RH has been verified, the better explicit numerical bounds one can get on error terms for prime-counting functions.
    $endgroup$
    – Greg Martin
    Mar 21 at 17:44













18












18








18





$begingroup$

I would add a few more comments to the very pertinent ones above:



1: We are lucky to have two things that work in our favor - an excellent representation of $zeta$ on the critical line by a simple real function (simple up to a good approximation, approximation usually called the Riemann Siegel formula) - the Hardy function, $Z(t)$ - multiplied by a function of absolute value $1$, so critical zeros of a very complicated transcendental complex function ($zeta(s)$) are also zeros of a much simpler real function, $Z(t)$, zeros that can be determined to high accuracy.



2: We are also lucky to have a very accurate formula (Riemann-von Mangoldt) that determines with perfect accuracy the number of zeros in the critical strip up to a fixed bound on the imaginary part, so putting 1 and 2 together we conclude that RH is true up to high imaginary part bounds by computing the zeros on the critical line with 1 and showing that there are these many zeros in the full strip up to that level by 2:



3: There is a duality between $zeta$ non-trivial zeroes and primes that allows to at least try investigate some problems about primes using $zeta$ zeroes instead, so having a huge database of such could be quite useful at least potentially






share|cite|improve this answer









$endgroup$



I would add a few more comments to the very pertinent ones above:



1: We are lucky to have two things that work in our favor - an excellent representation of $zeta$ on the critical line by a simple real function (simple up to a good approximation, approximation usually called the Riemann Siegel formula) - the Hardy function, $Z(t)$ - multiplied by a function of absolute value $1$, so critical zeros of a very complicated transcendental complex function ($zeta(s)$) are also zeros of a much simpler real function, $Z(t)$, zeros that can be determined to high accuracy.



2: We are also lucky to have a very accurate formula (Riemann-von Mangoldt) that determines with perfect accuracy the number of zeros in the critical strip up to a fixed bound on the imaginary part, so putting 1 and 2 together we conclude that RH is true up to high imaginary part bounds by computing the zeros on the critical line with 1 and showing that there are these many zeros in the full strip up to that level by 2:



3: There is a duality between $zeta$ non-trivial zeroes and primes that allows to at least try investigate some problems about primes using $zeta$ zeroes instead, so having a huge database of such could be quite useful at least potentially







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 21 at 15:39









ConradConrad

42616




42616







  • 3




    $begingroup$
    I'd say the point is not just that $Z(t)$ can be expressed somewhat more simply, but that it is in general simple to prove that a real function has a zero in a small interval - if the sign changes, there has to be a zero in there.
    $endgroup$
    – Nell
    Mar 21 at 16:30






  • 6




    $begingroup$
    Re 3: In particular, the higher that RH has been verified, the better explicit numerical bounds one can get on error terms for prime-counting functions.
    $endgroup$
    – Greg Martin
    Mar 21 at 17:44












  • 3




    $begingroup$
    I'd say the point is not just that $Z(t)$ can be expressed somewhat more simply, but that it is in general simple to prove that a real function has a zero in a small interval - if the sign changes, there has to be a zero in there.
    $endgroup$
    – Nell
    Mar 21 at 16:30






  • 6




    $begingroup$
    Re 3: In particular, the higher that RH has been verified, the better explicit numerical bounds one can get on error terms for prime-counting functions.
    $endgroup$
    – Greg Martin
    Mar 21 at 17:44







3




3




$begingroup$
I'd say the point is not just that $Z(t)$ can be expressed somewhat more simply, but that it is in general simple to prove that a real function has a zero in a small interval - if the sign changes, there has to be a zero in there.
$endgroup$
– Nell
Mar 21 at 16:30




$begingroup$
I'd say the point is not just that $Z(t)$ can be expressed somewhat more simply, but that it is in general simple to prove that a real function has a zero in a small interval - if the sign changes, there has to be a zero in there.
$endgroup$
– Nell
Mar 21 at 16:30




6




6




$begingroup$
Re 3: In particular, the higher that RH has been verified, the better explicit numerical bounds one can get on error terms for prime-counting functions.
$endgroup$
– Greg Martin
Mar 21 at 17:44




$begingroup$
Re 3: In particular, the higher that RH has been verified, the better explicit numerical bounds one can get on error terms for prime-counting functions.
$endgroup$
– Greg Martin
Mar 21 at 17:44











14












$begingroup$

Part of the point is that such numerical checks can be demonstrations of the efficiency of this or that new algorithm. However, it is also the case that a finite check (that all the zeroes of $zeta(s)$ with $Im(s)leq T$, say, lie on the critical line) can be used in actual proofs of other statements, provided that it is rigorous.



For that matter, computing the first $n$ zeroes of the Riemann zeta function can be used to disprove another conjecture. Take, for instance,



Odlyzko, A. M., & te Riele, H. J. J. (1985). Disproof of the Mertens conjecture. Journal für die reine und angewandte Mathematik, 357, 138-160.






share|cite|improve this answer










New contributor




Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    The reference to the work of Odlyzko and the Riele is a bit misleading - they only used the first 2000 zeros, but they needed to compute them to very high precision, 100 digits.
    $endgroup$
    – Stopple
    Mar 22 at 23:44










  • $begingroup$
    I didn't say $n$ was all that high...
    $endgroup$
    – Nell
    Mar 23 at 1:03















14












$begingroup$

Part of the point is that such numerical checks can be demonstrations of the efficiency of this or that new algorithm. However, it is also the case that a finite check (that all the zeroes of $zeta(s)$ with $Im(s)leq T$, say, lie on the critical line) can be used in actual proofs of other statements, provided that it is rigorous.



For that matter, computing the first $n$ zeroes of the Riemann zeta function can be used to disprove another conjecture. Take, for instance,



Odlyzko, A. M., & te Riele, H. J. J. (1985). Disproof of the Mertens conjecture. Journal für die reine und angewandte Mathematik, 357, 138-160.






share|cite|improve this answer










New contributor




Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    The reference to the work of Odlyzko and the Riele is a bit misleading - they only used the first 2000 zeros, but they needed to compute them to very high precision, 100 digits.
    $endgroup$
    – Stopple
    Mar 22 at 23:44










  • $begingroup$
    I didn't say $n$ was all that high...
    $endgroup$
    – Nell
    Mar 23 at 1:03













14












14








14





$begingroup$

Part of the point is that such numerical checks can be demonstrations of the efficiency of this or that new algorithm. However, it is also the case that a finite check (that all the zeroes of $zeta(s)$ with $Im(s)leq T$, say, lie on the critical line) can be used in actual proofs of other statements, provided that it is rigorous.



For that matter, computing the first $n$ zeroes of the Riemann zeta function can be used to disprove another conjecture. Take, for instance,



Odlyzko, A. M., & te Riele, H. J. J. (1985). Disproof of the Mertens conjecture. Journal für die reine und angewandte Mathematik, 357, 138-160.






share|cite|improve this answer










New contributor




Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



Part of the point is that such numerical checks can be demonstrations of the efficiency of this or that new algorithm. However, it is also the case that a finite check (that all the zeroes of $zeta(s)$ with $Im(s)leq T$, say, lie on the critical line) can be used in actual proofs of other statements, provided that it is rigorous.



For that matter, computing the first $n$ zeroes of the Riemann zeta function can be used to disprove another conjecture. Take, for instance,



Odlyzko, A. M., & te Riele, H. J. J. (1985). Disproof of the Mertens conjecture. Journal für die reine und angewandte Mathematik, 357, 138-160.







share|cite|improve this answer










New contributor




Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this answer



share|cite|improve this answer








edited Mar 21 at 17:46





















New contributor




Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered Mar 21 at 14:16









NellNell

37011




37011




New contributor




Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Nell is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    The reference to the work of Odlyzko and the Riele is a bit misleading - they only used the first 2000 zeros, but they needed to compute them to very high precision, 100 digits.
    $endgroup$
    – Stopple
    Mar 22 at 23:44










  • $begingroup$
    I didn't say $n$ was all that high...
    $endgroup$
    – Nell
    Mar 23 at 1:03
















  • $begingroup$
    The reference to the work of Odlyzko and the Riele is a bit misleading - they only used the first 2000 zeros, but they needed to compute them to very high precision, 100 digits.
    $endgroup$
    – Stopple
    Mar 22 at 23:44










  • $begingroup$
    I didn't say $n$ was all that high...
    $endgroup$
    – Nell
    Mar 23 at 1:03















$begingroup$
The reference to the work of Odlyzko and the Riele is a bit misleading - they only used the first 2000 zeros, but they needed to compute them to very high precision, 100 digits.
$endgroup$
– Stopple
Mar 22 at 23:44




$begingroup$
The reference to the work of Odlyzko and the Riele is a bit misleading - they only used the first 2000 zeros, but they needed to compute them to very high precision, 100 digits.
$endgroup$
– Stopple
Mar 22 at 23:44












$begingroup$
I didn't say $n$ was all that high...
$endgroup$
– Nell
Mar 23 at 1:03




$begingroup$
I didn't say $n$ was all that high...
$endgroup$
– Nell
Mar 23 at 1:03

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325963%2fwhy-is-so-much-work-done-on-numerical-verification-of-the-riemann-hypothesis%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







-analytic-number-theory, nt.number-theory, riemann-hypothesis, riemann-zeta-function

Popular posts from this blog

Identify plant with long narrow paired leaves and reddish stems Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is this plant with long sharp leaves? Is it a weed?What is this 3ft high, stalky plant, with mid sized narrow leaves?What is this young shrub with opposite ovate, crenate leaves and reddish stems?What is this plant with large broad serrated leaves?Identify this upright branching weed with long leaves and reddish stemsPlease help me identify this bulbous plant with long, broad leaves and white flowersWhat is this small annual with narrow gray/green leaves and rust colored daisy-type flowers?What is this chilli plant?Does anyone know what type of chilli plant this is?Help identify this plant

fontconfig warning: “/etc/fonts/fonts.conf”, line 100: unknown “element blank” The 2019 Stack Overflow Developer Survey Results Are In“tar: unrecognized option --warning” during 'apt-get install'How to fix Fontconfig errorHow do I figure out which font file is chosen for a system generic font alias?Why are some apt-get-installed fonts being ignored by fc-list, xfontsel, etc?Reload settings in /etc/fonts/conf.dTaking 30 seconds longer to boot after upgrade from jessie to stretchHow to match multiple font names with a single <match> element?Adding a custom font to fontconfigRemoving fonts from fontconfig <match> resultsBroken fonts after upgrading Firefox ESR to latest Firefox

Shilpa Shastras Contents Description In painting In carpentry In metallurgy Shilpa Shastra education in ancient India Treatises on Shilpa Shastras See also References Further reading External links Navigation menueOverviewTraditions of the Indian Craftsman251930242ŚilpinŚilpiniTraditions of the Indian CraftsmanThe Technique of Wall Painting in Ancient IndiaEssay on the Architecture of the HindusThe Journal of the Society of Arts10.1007/s11837-998-0378-3The role of India in the diffusion of early culturesTraditions of the Indian CraftsmanAn Encyclopedia of Hindu ArchitectureBibliography of Vastu Shastra Literature, 1834-2009The Technique of Wall Painting in Ancient India4483067Les lapidaires indiens