Quantum Toffoli gate equation The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Does quantum control allow to implement any gate?Obtaining gate $e^-iDelta t Z$ from elementary gatesExplicit Conversion Between Universal Gate SetsUnderstanding the Group Leaders Optimization AlgorithmMatrix representation and CX gateComposing the CNOT gate as a tensor product of two level matricesRewrite circuit with measurements with unitariesHow to understand the operators for watermarking schemes?Implementing these $N×N$ matrices on $log N$ qubitsCalculating entries of unitary transformation
Semisimplicity of the category of coherent sheaves?
How are presidential pardons supposed to be used?
Am I ethically obligated to go into work on an off day if the reason is sudden?
Relations between two reciprocal partial derivatives?
What can I do if neighbor is blocking my solar panels intentionally?
Why can't wing-mounted spoilers be used to steepen approaches?
Does Parliament need to approve the new Brexit delay to 31 October 2019?
Create an outline of font
Can a 1st-level character have an ability score above 18?
The variadic template constructor of my class cannot modify my class members, why is that so?
Sort a list of pairs representing an acyclic, partial automorphism
When did F become S in typeography, and why?
How to pronounce 1ターン?
Wall plug outlet change
How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time
Derivation tree not rendering
Take groceries in checked luggage
Can withdrawing asylum be illegal?
Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?
Working through the single responsibility principle (SRP) in Python when calls are expensive
Didn't get enough time to take a Coding Test - what to do now?
Did the new image of black hole confirm the general theory of relativity?
What aspect of planet Earth must be changed to prevent the industrial revolution?
Is this wall load bearing? Blueprints and photos attached
Quantum Toffoli gate equation
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Does quantum control allow to implement any gate?Obtaining gate $e^-iDelta t Z$ from elementary gatesExplicit Conversion Between Universal Gate SetsUnderstanding the Group Leaders Optimization AlgorithmMatrix representation and CX gateComposing the CNOT gate as a tensor product of two level matricesRewrite circuit with measurements with unitariesHow to understand the operators for watermarking schemes?Implementing these $N×N$ matrices on $log N$ qubitsCalculating entries of unitary transformation
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I was reading a research article on quantum computing and didn't understand the tensor notations for the unitary operations. The article defined two controlled gates.
Let $U_2^m$ be a $2^m times 2^m$ unitary matrix, $I_2^m$ be a $2^m times 2^m$ identity matrix. Then, controlled gates $C_n^j(U_2^m)$ and $V_n^j(U_2^m)$ with $n$ control qubits and $m$ target qubits are defined by $$ C_n^j(U_2^m)=(|jrangle langle j|) otimes U_2^m+ sum_i=0,i neq j^2^n-1((|irangle langle i| otimes I_2^m$$
$$ V_n^j(U_2^m) = U_2^m otimes (|jrangle langle j|) + sum_i=0,i neq j^2^n-1( I_2^m otimes (|irangle langle i| ))$$
Then they say that $C_2^j(X)$ and $V_2^j(X) $are toffoli gates.
Can someone explain the equations that are given
and how does this special case be a Toffoli?
quantum-gate tensor-product
$endgroup$
add a comment |
$begingroup$
I was reading a research article on quantum computing and didn't understand the tensor notations for the unitary operations. The article defined two controlled gates.
Let $U_2^m$ be a $2^m times 2^m$ unitary matrix, $I_2^m$ be a $2^m times 2^m$ identity matrix. Then, controlled gates $C_n^j(U_2^m)$ and $V_n^j(U_2^m)$ with $n$ control qubits and $m$ target qubits are defined by $$ C_n^j(U_2^m)=(|jrangle langle j|) otimes U_2^m+ sum_i=0,i neq j^2^n-1((|irangle langle i| otimes I_2^m$$
$$ V_n^j(U_2^m) = U_2^m otimes (|jrangle langle j|) + sum_i=0,i neq j^2^n-1( I_2^m otimes (|irangle langle i| ))$$
Then they say that $C_2^j(X)$ and $V_2^j(X) $are toffoli gates.
Can someone explain the equations that are given
and how does this special case be a Toffoli?
quantum-gate tensor-product
$endgroup$
add a comment |
$begingroup$
I was reading a research article on quantum computing and didn't understand the tensor notations for the unitary operations. The article defined two controlled gates.
Let $U_2^m$ be a $2^m times 2^m$ unitary matrix, $I_2^m$ be a $2^m times 2^m$ identity matrix. Then, controlled gates $C_n^j(U_2^m)$ and $V_n^j(U_2^m)$ with $n$ control qubits and $m$ target qubits are defined by $$ C_n^j(U_2^m)=(|jrangle langle j|) otimes U_2^m+ sum_i=0,i neq j^2^n-1((|irangle langle i| otimes I_2^m$$
$$ V_n^j(U_2^m) = U_2^m otimes (|jrangle langle j|) + sum_i=0,i neq j^2^n-1( I_2^m otimes (|irangle langle i| ))$$
Then they say that $C_2^j(X)$ and $V_2^j(X) $are toffoli gates.
Can someone explain the equations that are given
and how does this special case be a Toffoli?
quantum-gate tensor-product
$endgroup$
I was reading a research article on quantum computing and didn't understand the tensor notations for the unitary operations. The article defined two controlled gates.
Let $U_2^m$ be a $2^m times 2^m$ unitary matrix, $I_2^m$ be a $2^m times 2^m$ identity matrix. Then, controlled gates $C_n^j(U_2^m)$ and $V_n^j(U_2^m)$ with $n$ control qubits and $m$ target qubits are defined by $$ C_n^j(U_2^m)=(|jrangle langle j|) otimes U_2^m+ sum_i=0,i neq j^2^n-1((|irangle langle i| otimes I_2^m$$
$$ V_n^j(U_2^m) = U_2^m otimes (|jrangle langle j|) + sum_i=0,i neq j^2^n-1( I_2^m otimes (|irangle langle i| ))$$
Then they say that $C_2^j(X)$ and $V_2^j(X) $are toffoli gates.
Can someone explain the equations that are given
and how does this special case be a Toffoli?
quantum-gate tensor-product
quantum-gate tensor-product
edited yesterday
Sanchayan Dutta♦
6,64141556
6,64141556
asked yesterday
UpstartUpstart
1506
1506
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.
Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:
$$
C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
$$
Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
Hence
$$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
and
$$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$
Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.
Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.
$endgroup$
$begingroup$
$y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
$endgroup$
– Upstart
yesterday
$begingroup$
yes, that is it.
$endgroup$
– Danylo Y
yesterday
$begingroup$
why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
$endgroup$
– Upstart
yesterday
$begingroup$
$langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
$endgroup$
– Danylo Y
yesterday
$begingroup$
i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
$endgroup$
– Upstart
yesterday
|
show 5 more comments
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "694"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5899%2fquantum-toffoli-gate-equation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.
Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:
$$
C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
$$
Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
Hence
$$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
and
$$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$
Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.
Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.
$endgroup$
$begingroup$
$y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
$endgroup$
– Upstart
yesterday
$begingroup$
yes, that is it.
$endgroup$
– Danylo Y
yesterday
$begingroup$
why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
$endgroup$
– Upstart
yesterday
$begingroup$
$langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
$endgroup$
– Danylo Y
yesterday
$begingroup$
i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
$endgroup$
– Upstart
yesterday
|
show 5 more comments
$begingroup$
Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.
Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:
$$
C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
$$
Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
Hence
$$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
and
$$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$
Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.
Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.
$endgroup$
$begingroup$
$y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
$endgroup$
– Upstart
yesterday
$begingroup$
yes, that is it.
$endgroup$
– Danylo Y
yesterday
$begingroup$
why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
$endgroup$
– Upstart
yesterday
$begingroup$
$langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
$endgroup$
– Danylo Y
yesterday
$begingroup$
i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
$endgroup$
– Upstart
yesterday
|
show 5 more comments
$begingroup$
Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.
Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:
$$
C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
$$
Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
Hence
$$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
and
$$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$
Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.
Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.
$endgroup$
Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.
Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:
$$
C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
$$
Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
Hence
$$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
and
$$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$
Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.
Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.
edited yesterday
answered yesterday
Danylo YDanylo Y
45116
45116
$begingroup$
$y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
$endgroup$
– Upstart
yesterday
$begingroup$
yes, that is it.
$endgroup$
– Danylo Y
yesterday
$begingroup$
why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
$endgroup$
– Upstart
yesterday
$begingroup$
$langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
$endgroup$
– Danylo Y
yesterday
$begingroup$
i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
$endgroup$
– Upstart
yesterday
|
show 5 more comments
$begingroup$
$y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
$endgroup$
– Upstart
yesterday
$begingroup$
yes, that is it.
$endgroup$
– Danylo Y
yesterday
$begingroup$
why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
$endgroup$
– Upstart
yesterday
$begingroup$
$langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
$endgroup$
– Danylo Y
yesterday
$begingroup$
i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
$endgroup$
– Upstart
yesterday
$begingroup$
$y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
$endgroup$
– Upstart
yesterday
$begingroup$
$y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
$endgroup$
– Upstart
yesterday
$begingroup$
yes, that is it.
$endgroup$
– Danylo Y
yesterday
$begingroup$
yes, that is it.
$endgroup$
– Danylo Y
yesterday
$begingroup$
why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
$endgroup$
– Upstart
yesterday
$begingroup$
why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
$endgroup$
– Upstart
yesterday
$begingroup$
$langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
$endgroup$
– Danylo Y
yesterday
$begingroup$
$langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
$endgroup$
– Danylo Y
yesterday
$begingroup$
i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
$endgroup$
– Upstart
yesterday
$begingroup$
i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
$endgroup$
– Upstart
yesterday
|
show 5 more comments
Thanks for contributing an answer to Quantum Computing Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5899%2fquantum-toffoli-gate-equation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
-quantum-gate, tensor-product