Potential by Assembling Charges The 2019 Stack Overflow Developer Survey Results Are InPotential difference between Earth's surface and 2 meters abovePotential of a uniformly charged hollow sphereElectric potential inside a conductorElectric field and electric scalar potential of two perpendicular wiresboundary condition of electrical fieldElectric Potential due to Sphere when cavity is at arbitrary positionSystem of point charges, Potential related questionIs this process to compute the electrostatic potential energy a valid one?Do charges move to the outer surface of a conductor to minimize the potential energy?Can Potential Energy be found by Energy Density?

How can I define good in a religion that claims no moral authority?

Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?

Keeping a retro style to sci-fi spaceships?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

Can there be female White Walkers?

Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?

What does もの mean in this sentence?

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Are spiders unable to hurt humans, especially very small spiders?

Can an undergraduate be advised by a professor who is very far away?

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

Are there any other methods to apply to solving simultaneous equations?

Worn-tile Scrabble

Straighten subgroup lattice

Finding the area between two curves with Integrate

Is it safe to harvest rainwater that fell on solar panels?

How can I have a shield and a way of attacking with a ranged weapon at the same time?

Why does the nucleus not repel itself?

Will it cause any balance problems to have PCs level up and gain the benefits of a long rest mid-fight?

How to type a long/em dash `—`

Is an up-to-date browser secure on an out-of-date OS?

Why are there uneven bright areas in this photo of black hole?

Is Cinnamon a desktop environment or a window manager? (Or both?)

What do hard-Brexiteers want with respect to the Irish border?



Potential by Assembling Charges



The 2019 Stack Overflow Developer Survey Results Are InPotential difference between Earth's surface and 2 meters abovePotential of a uniformly charged hollow sphereElectric potential inside a conductorElectric field and electric scalar potential of two perpendicular wiresboundary condition of electrical fieldElectric Potential due to Sphere when cavity is at arbitrary positionSystem of point charges, Potential related questionIs this process to compute the electrostatic potential energy a valid one?Do charges move to the outer surface of a conductor to minimize the potential energy?Can Potential Energy be found by Energy Density?










2












$begingroup$


For finding electric potential energy of a uniformly charged sphere, we can assemble the sphere by brining charges from infinity to that point. So to make a uniformly charged sphere of radius $R$ and total charge $Q$, at some instant, charge will be assembled up to a certain radius $x$.
In order to find potential of this sphere at the surface, why is my approach giving different answers?



Approach 1:



$$rho = frac3Q4 pi R^3$$



$$q = frac43 pi x^3 rho = Q fracx^3R^3$$
Potential at the surface would be $$V = fracq4 pi epsilon_0 x = fracQ x^24 pi epsilon_0 R^3$$



Approach 2:
$$rho = frac3Q4 pi R^3$$
$$q = frac43 pi x^3 rho = Q fracx^3R^3$$
$$E = fracQ x4 pi epsilon_0 R^3$$ (From Gauss' Law)



Potential at the surface would be $$V = -intvecE cdot vecdx = -fracQ4 pi epsilon_0 R^3 int_0^xxdx = -fracQ x^28 pi epsilon_0 R^3$$



Why is the answer different in both the cases?










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    For finding electric potential energy of a uniformly charged sphere, we can assemble the sphere by brining charges from infinity to that point. So to make a uniformly charged sphere of radius $R$ and total charge $Q$, at some instant, charge will be assembled up to a certain radius $x$.
    In order to find potential of this sphere at the surface, why is my approach giving different answers?



    Approach 1:



    $$rho = frac3Q4 pi R^3$$



    $$q = frac43 pi x^3 rho = Q fracx^3R^3$$
    Potential at the surface would be $$V = fracq4 pi epsilon_0 x = fracQ x^24 pi epsilon_0 R^3$$



    Approach 2:
    $$rho = frac3Q4 pi R^3$$
    $$q = frac43 pi x^3 rho = Q fracx^3R^3$$
    $$E = fracQ x4 pi epsilon_0 R^3$$ (From Gauss' Law)



    Potential at the surface would be $$V = -intvecE cdot vecdx = -fracQ4 pi epsilon_0 R^3 int_0^xxdx = -fracQ x^28 pi epsilon_0 R^3$$



    Why is the answer different in both the cases?










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      For finding electric potential energy of a uniformly charged sphere, we can assemble the sphere by brining charges from infinity to that point. So to make a uniformly charged sphere of radius $R$ and total charge $Q$, at some instant, charge will be assembled up to a certain radius $x$.
      In order to find potential of this sphere at the surface, why is my approach giving different answers?



      Approach 1:



      $$rho = frac3Q4 pi R^3$$



      $$q = frac43 pi x^3 rho = Q fracx^3R^3$$
      Potential at the surface would be $$V = fracq4 pi epsilon_0 x = fracQ x^24 pi epsilon_0 R^3$$



      Approach 2:
      $$rho = frac3Q4 pi R^3$$
      $$q = frac43 pi x^3 rho = Q fracx^3R^3$$
      $$E = fracQ x4 pi epsilon_0 R^3$$ (From Gauss' Law)



      Potential at the surface would be $$V = -intvecE cdot vecdx = -fracQ4 pi epsilon_0 R^3 int_0^xxdx = -fracQ x^28 pi epsilon_0 R^3$$



      Why is the answer different in both the cases?










      share|cite|improve this question











      $endgroup$




      For finding electric potential energy of a uniformly charged sphere, we can assemble the sphere by brining charges from infinity to that point. So to make a uniformly charged sphere of radius $R$ and total charge $Q$, at some instant, charge will be assembled up to a certain radius $x$.
      In order to find potential of this sphere at the surface, why is my approach giving different answers?



      Approach 1:



      $$rho = frac3Q4 pi R^3$$



      $$q = frac43 pi x^3 rho = Q fracx^3R^3$$
      Potential at the surface would be $$V = fracq4 pi epsilon_0 x = fracQ x^24 pi epsilon_0 R^3$$



      Approach 2:
      $$rho = frac3Q4 pi R^3$$
      $$q = frac43 pi x^3 rho = Q fracx^3R^3$$
      $$E = fracQ x4 pi epsilon_0 R^3$$ (From Gauss' Law)



      Potential at the surface would be $$V = -intvecE cdot vecdx = -fracQ4 pi epsilon_0 R^3 int_0^xxdx = -fracQ x^28 pi epsilon_0 R^3$$



      Why is the answer different in both the cases?







      electrostatics potential






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday







      Kushal T.

















      asked yesterday









      Kushal T.Kushal T.

      537




      537




















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Approach 2 is wrong. You didn't take into account the corresponding limits for potential. Potential at centre of sphere is not zero!! The expression is V(x)-V(0) instead of V(x).... Find potential at surface by integrating for electric field outside sphere from X to infinity V(infinity)=0. So Then if you wish you can find V(x) by integrating from x=x to any general x=y(






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            You're right, thanks. We can use the fact that potential difference between centre of sphere and infinity is $-frac3Q8 pi epsilon_0 R$, and so the answer can be difference between my answer in approach two and the potential at the centre of the sphere, that is $$-frac3Q8 pi epsilon_0 R - ( - fracQ8 pi epsilon_0 R) = boxed-fracQ4 pi epsilon_0 R$$ and so we are done.
            $endgroup$
            – Kushal T.
            yesterday



















          2












          $begingroup$

          Two cases described are completely different. In first case you find the true potential of the sphere by taking the charge from infinity to the surface of the sphere. In another case you take the charge from the middle of the sphere or the centre of the sphere to the surface of the sphere which is not the potential of the sphere surface. The potential of the sphere surface can be described as the work needed to push a positive charge from infinity to a to the surface or the energy stored to push the charge from the the surface towards the infinity so you can see in your second case you are not calculating the potential of the surface of the sphere. SHORT NOTE:- You can find the potential at any point by finding the difference of potential at that point and any other point whose the potential is zero now at the centre of the the sphere you don't have the potential as 0. See this:http://physics.bu.edu/~duffy/semester2/d06_potential_spheres.html






          share|cite|improve this answer











          $endgroup$




















            1












            $begingroup$

            The first thing to note is that the electric potential at a point is entirely different to the electric potential energy of an assembly of charges.

            I have assumed that you are finding the potential at a point and you have used two definitions of the zero of electric potential, one at infinity and the other at the centre of the charge distribution.



            Using Gauss's law the graph of electric field strength $E(x)$ against distance from the centre of the charge distribution $x$ looks something like this.



            enter image description here



            The area under the graph $int E,dx$ is related to the change in potential.



            In essence what you have done is found that areas $A$ and $B$ are not the same.



            PS You may well have met a similar graph with $E(r)$ negative and labelled $g(r)$ when discussing the gravitational field due to the earth and the gravitational field strength inside the Earth?






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "151"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471655%2fpotential-by-assembling-charges%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Approach 2 is wrong. You didn't take into account the corresponding limits for potential. Potential at centre of sphere is not zero!! The expression is V(x)-V(0) instead of V(x).... Find potential at surface by integrating for electric field outside sphere from X to infinity V(infinity)=0. So Then if you wish you can find V(x) by integrating from x=x to any general x=y(






              share|cite|improve this answer









              $endgroup$








              • 1




                $begingroup$
                You're right, thanks. We can use the fact that potential difference between centre of sphere and infinity is $-frac3Q8 pi epsilon_0 R$, and so the answer can be difference between my answer in approach two and the potential at the centre of the sphere, that is $$-frac3Q8 pi epsilon_0 R - ( - fracQ8 pi epsilon_0 R) = boxed-fracQ4 pi epsilon_0 R$$ and so we are done.
                $endgroup$
                – Kushal T.
                yesterday
















              2












              $begingroup$

              Approach 2 is wrong. You didn't take into account the corresponding limits for potential. Potential at centre of sphere is not zero!! The expression is V(x)-V(0) instead of V(x).... Find potential at surface by integrating for electric field outside sphere from X to infinity V(infinity)=0. So Then if you wish you can find V(x) by integrating from x=x to any general x=y(






              share|cite|improve this answer









              $endgroup$








              • 1




                $begingroup$
                You're right, thanks. We can use the fact that potential difference between centre of sphere and infinity is $-frac3Q8 pi epsilon_0 R$, and so the answer can be difference between my answer in approach two and the potential at the centre of the sphere, that is $$-frac3Q8 pi epsilon_0 R - ( - fracQ8 pi epsilon_0 R) = boxed-fracQ4 pi epsilon_0 R$$ and so we are done.
                $endgroup$
                – Kushal T.
                yesterday














              2












              2








              2





              $begingroup$

              Approach 2 is wrong. You didn't take into account the corresponding limits for potential. Potential at centre of sphere is not zero!! The expression is V(x)-V(0) instead of V(x).... Find potential at surface by integrating for electric field outside sphere from X to infinity V(infinity)=0. So Then if you wish you can find V(x) by integrating from x=x to any general x=y(






              share|cite|improve this answer









              $endgroup$



              Approach 2 is wrong. You didn't take into account the corresponding limits for potential. Potential at centre of sphere is not zero!! The expression is V(x)-V(0) instead of V(x).... Find potential at surface by integrating for electric field outside sphere from X to infinity V(infinity)=0. So Then if you wish you can find V(x) by integrating from x=x to any general x=y(







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered yesterday









              TojrahTojrah

              2207




              2207







              • 1




                $begingroup$
                You're right, thanks. We can use the fact that potential difference between centre of sphere and infinity is $-frac3Q8 pi epsilon_0 R$, and so the answer can be difference between my answer in approach two and the potential at the centre of the sphere, that is $$-frac3Q8 pi epsilon_0 R - ( - fracQ8 pi epsilon_0 R) = boxed-fracQ4 pi epsilon_0 R$$ and so we are done.
                $endgroup$
                – Kushal T.
                yesterday













              • 1




                $begingroup$
                You're right, thanks. We can use the fact that potential difference between centre of sphere and infinity is $-frac3Q8 pi epsilon_0 R$, and so the answer can be difference between my answer in approach two and the potential at the centre of the sphere, that is $$-frac3Q8 pi epsilon_0 R - ( - fracQ8 pi epsilon_0 R) = boxed-fracQ4 pi epsilon_0 R$$ and so we are done.
                $endgroup$
                – Kushal T.
                yesterday








              1




              1




              $begingroup$
              You're right, thanks. We can use the fact that potential difference between centre of sphere and infinity is $-frac3Q8 pi epsilon_0 R$, and so the answer can be difference between my answer in approach two and the potential at the centre of the sphere, that is $$-frac3Q8 pi epsilon_0 R - ( - fracQ8 pi epsilon_0 R) = boxed-fracQ4 pi epsilon_0 R$$ and so we are done.
              $endgroup$
              – Kushal T.
              yesterday





              $begingroup$
              You're right, thanks. We can use the fact that potential difference between centre of sphere and infinity is $-frac3Q8 pi epsilon_0 R$, and so the answer can be difference between my answer in approach two and the potential at the centre of the sphere, that is $$-frac3Q8 pi epsilon_0 R - ( - fracQ8 pi epsilon_0 R) = boxed-fracQ4 pi epsilon_0 R$$ and so we are done.
              $endgroup$
              – Kushal T.
              yesterday












              2












              $begingroup$

              Two cases described are completely different. In first case you find the true potential of the sphere by taking the charge from infinity to the surface of the sphere. In another case you take the charge from the middle of the sphere or the centre of the sphere to the surface of the sphere which is not the potential of the sphere surface. The potential of the sphere surface can be described as the work needed to push a positive charge from infinity to a to the surface or the energy stored to push the charge from the the surface towards the infinity so you can see in your second case you are not calculating the potential of the surface of the sphere. SHORT NOTE:- You can find the potential at any point by finding the difference of potential at that point and any other point whose the potential is zero now at the centre of the the sphere you don't have the potential as 0. See this:http://physics.bu.edu/~duffy/semester2/d06_potential_spheres.html






              share|cite|improve this answer











              $endgroup$

















                2












                $begingroup$

                Two cases described are completely different. In first case you find the true potential of the sphere by taking the charge from infinity to the surface of the sphere. In another case you take the charge from the middle of the sphere or the centre of the sphere to the surface of the sphere which is not the potential of the sphere surface. The potential of the sphere surface can be described as the work needed to push a positive charge from infinity to a to the surface or the energy stored to push the charge from the the surface towards the infinity so you can see in your second case you are not calculating the potential of the surface of the sphere. SHORT NOTE:- You can find the potential at any point by finding the difference of potential at that point and any other point whose the potential is zero now at the centre of the the sphere you don't have the potential as 0. See this:http://physics.bu.edu/~duffy/semester2/d06_potential_spheres.html






                share|cite|improve this answer











                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Two cases described are completely different. In first case you find the true potential of the sphere by taking the charge from infinity to the surface of the sphere. In another case you take the charge from the middle of the sphere or the centre of the sphere to the surface of the sphere which is not the potential of the sphere surface. The potential of the sphere surface can be described as the work needed to push a positive charge from infinity to a to the surface or the energy stored to push the charge from the the surface towards the infinity so you can see in your second case you are not calculating the potential of the surface of the sphere. SHORT NOTE:- You can find the potential at any point by finding the difference of potential at that point and any other point whose the potential is zero now at the centre of the the sphere you don't have the potential as 0. See this:http://physics.bu.edu/~duffy/semester2/d06_potential_spheres.html






                  share|cite|improve this answer











                  $endgroup$



                  Two cases described are completely different. In first case you find the true potential of the sphere by taking the charge from infinity to the surface of the sphere. In another case you take the charge from the middle of the sphere or the centre of the sphere to the surface of the sphere which is not the potential of the sphere surface. The potential of the sphere surface can be described as the work needed to push a positive charge from infinity to a to the surface or the energy stored to push the charge from the the surface towards the infinity so you can see in your second case you are not calculating the potential of the surface of the sphere. SHORT NOTE:- You can find the potential at any point by finding the difference of potential at that point and any other point whose the potential is zero now at the centre of the the sphere you don't have the potential as 0. See this:http://physics.bu.edu/~duffy/semester2/d06_potential_spheres.html







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited yesterday

























                  answered yesterday









                  Nobody recognizeableNobody recognizeable

                  657617




                  657617





















                      1












                      $begingroup$

                      The first thing to note is that the electric potential at a point is entirely different to the electric potential energy of an assembly of charges.

                      I have assumed that you are finding the potential at a point and you have used two definitions of the zero of electric potential, one at infinity and the other at the centre of the charge distribution.



                      Using Gauss's law the graph of electric field strength $E(x)$ against distance from the centre of the charge distribution $x$ looks something like this.



                      enter image description here



                      The area under the graph $int E,dx$ is related to the change in potential.



                      In essence what you have done is found that areas $A$ and $B$ are not the same.



                      PS You may well have met a similar graph with $E(r)$ negative and labelled $g(r)$ when discussing the gravitational field due to the earth and the gravitational field strength inside the Earth?






                      share|cite|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        The first thing to note is that the electric potential at a point is entirely different to the electric potential energy of an assembly of charges.

                        I have assumed that you are finding the potential at a point and you have used two definitions of the zero of electric potential, one at infinity and the other at the centre of the charge distribution.



                        Using Gauss's law the graph of electric field strength $E(x)$ against distance from the centre of the charge distribution $x$ looks something like this.



                        enter image description here



                        The area under the graph $int E,dx$ is related to the change in potential.



                        In essence what you have done is found that areas $A$ and $B$ are not the same.



                        PS You may well have met a similar graph with $E(r)$ negative and labelled $g(r)$ when discussing the gravitational field due to the earth and the gravitational field strength inside the Earth?






                        share|cite|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          The first thing to note is that the electric potential at a point is entirely different to the electric potential energy of an assembly of charges.

                          I have assumed that you are finding the potential at a point and you have used two definitions of the zero of electric potential, one at infinity and the other at the centre of the charge distribution.



                          Using Gauss's law the graph of electric field strength $E(x)$ against distance from the centre of the charge distribution $x$ looks something like this.



                          enter image description here



                          The area under the graph $int E,dx$ is related to the change in potential.



                          In essence what you have done is found that areas $A$ and $B$ are not the same.



                          PS You may well have met a similar graph with $E(r)$ negative and labelled $g(r)$ when discussing the gravitational field due to the earth and the gravitational field strength inside the Earth?






                          share|cite|improve this answer









                          $endgroup$



                          The first thing to note is that the electric potential at a point is entirely different to the electric potential energy of an assembly of charges.

                          I have assumed that you are finding the potential at a point and you have used two definitions of the zero of electric potential, one at infinity and the other at the centre of the charge distribution.



                          Using Gauss's law the graph of electric field strength $E(x)$ against distance from the centre of the charge distribution $x$ looks something like this.



                          enter image description here



                          The area under the graph $int E,dx$ is related to the change in potential.



                          In essence what you have done is found that areas $A$ and $B$ are not the same.



                          PS You may well have met a similar graph with $E(r)$ negative and labelled $g(r)$ when discussing the gravitational field due to the earth and the gravitational field strength inside the Earth?







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered yesterday









                          FarcherFarcher

                          52.1k340109




                          52.1k340109



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Physics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471655%2fpotential-by-assembling-charges%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              -electrostatics, potential

                              Popular posts from this blog

                              Identify plant with long narrow paired leaves and reddish stems Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is this plant with long sharp leaves? Is it a weed?What is this 3ft high, stalky plant, with mid sized narrow leaves?What is this young shrub with opposite ovate, crenate leaves and reddish stems?What is this plant with large broad serrated leaves?Identify this upright branching weed with long leaves and reddish stemsPlease help me identify this bulbous plant with long, broad leaves and white flowersWhat is this small annual with narrow gray/green leaves and rust colored daisy-type flowers?What is this chilli plant?Does anyone know what type of chilli plant this is?Help identify this plant

                              fontconfig warning: “/etc/fonts/fonts.conf”, line 100: unknown “element blank” The 2019 Stack Overflow Developer Survey Results Are In“tar: unrecognized option --warning” during 'apt-get install'How to fix Fontconfig errorHow do I figure out which font file is chosen for a system generic font alias?Why are some apt-get-installed fonts being ignored by fc-list, xfontsel, etc?Reload settings in /etc/fonts/conf.dTaking 30 seconds longer to boot after upgrade from jessie to stretchHow to match multiple font names with a single <match> element?Adding a custom font to fontconfigRemoving fonts from fontconfig <match> resultsBroken fonts after upgrading Firefox ESR to latest Firefox

                              Shilpa Shastras Contents Description In painting In carpentry In metallurgy Shilpa Shastra education in ancient India Treatises on Shilpa Shastras See also References Further reading External links Navigation menueOverviewTraditions of the Indian Craftsman251930242ŚilpinŚilpiniTraditions of the Indian CraftsmanThe Technique of Wall Painting in Ancient IndiaEssay on the Architecture of the HindusThe Journal of the Society of Arts10.1007/s11837-998-0378-3The role of India in the diffusion of early culturesTraditions of the Indian CraftsmanAn Encyclopedia of Hindu ArchitectureBibliography of Vastu Shastra Literature, 1834-2009The Technique of Wall Painting in Ancient India4483067Les lapidaires indiens