How strong is the axiom of well-ordered choice?No uncountable ordinals without the axiom of choice?Axiom of choice , Hartogs ordinals, well-ordering principleWhich sets are well-orderable without Axiom of Choice?Well-orderings of $mathbb R$ without Choice“There is no well-ordered uncountable set of real numbers”Axiom of choice and the well ordering principleThe class of well-founded sets satisfies the axiom of foundation and the axiom of choiceAxiom of Choice is equivalent to Well-ordering Theorem: Hrbacek, Jech - “Introduction to Set Theory”the power set of every well-ordered set is well-ordered implies well orderingHow strong are weak choice principles?
Should I apply for my boss's promotion?
Where is the License file location for Identity Server in Sitecore 9.1?
How to write a chaotic neutral protagonist and prevent my readers from thinking they are evil?
A vote on the Brexit backstop
Precision notation for voltmeters
Why would /etc/passwd be used every time someone executes `ls -l` command?
How to educate team mate to take screenshots for bugs with out unwanted stuff
Is it appropriate to ask a former professor to order a library book for me through ILL?
Use Mercury as quenching liquid for swords?
Professor forcing me to attend a conference, I can't afford even with 50% funding
Was this cameo in Captain Marvel computer generated?
Short story about an infectious indestructible metal bar?
How does a sound wave propagate?
ESPP--any reason not to go all in?
Should we avoid writing fiction about historical events without extensive research?
Do I need a return ticket to Canada if I'm a Japanese National?
School performs periodic password audits. Is my password compromised?
Sort array by month and year
I am the person who abides by rules but breaks the rules . Who am I
Averaging over columns while ignoring zero entries
Help! My Character is too much for her story!
Boss Telling direct supervisor I snitched
PTIJ: Sport in the Torah
Will the concrete slab in a partially heated shed conduct a lot of heat to the unconditioned area?
How strong is the axiom of well-ordered choice?
No uncountable ordinals without the axiom of choice?Axiom of choice , Hartogs ordinals, well-ordering principleWhich sets are well-orderable without Axiom of Choice?Well-orderings of $mathbb R$ without Choice“There is no well-ordered uncountable set of real numbers”Axiom of choice and the well ordering principleThe class of well-founded sets satisfies the axiom of foundation and the axiom of choiceAxiom of Choice is equivalent to Well-ordering Theorem: Hrbacek, Jech - “Introduction to Set Theory”the power set of every well-ordered set is well-ordered implies well orderingHow strong are weak choice principles?
$begingroup$
I sometimes see references to the "Axiom of Well-Ordered Choice," but I'm not sure how strong it is. It states that every well-ordered family of sets has a choice function.
By "well-ordered family," I don't mean that the sets within the family are well-ordered, but that the family must index all the sets within the family by some ordinal.
How strong is this axiom? Can it prove the Hahn-Banach theorem, the ultrafilter lemma, anything about measurable sets, etc? Does it have any implications about what sets can be well-ordered (the reals for instance), or perhaps prove anything about the Hartogs number of sets, etc?
Does anyone have a reference for this?
set-theory axiom-of-choice foundations well-orders
$endgroup$
|
show 2 more comments
$begingroup$
I sometimes see references to the "Axiom of Well-Ordered Choice," but I'm not sure how strong it is. It states that every well-ordered family of sets has a choice function.
By "well-ordered family," I don't mean that the sets within the family are well-ordered, but that the family must index all the sets within the family by some ordinal.
How strong is this axiom? Can it prove the Hahn-Banach theorem, the ultrafilter lemma, anything about measurable sets, etc? Does it have any implications about what sets can be well-ordered (the reals for instance), or perhaps prove anything about the Hartogs number of sets, etc?
Does anyone have a reference for this?
set-theory axiom-of-choice foundations well-orders
$endgroup$
$begingroup$
...isn't this axiom a consequence of ZF? One can choose the (well-defined, since it's well-ordered) lexicographically least element of each set in the family...
$endgroup$
– Steven Stadnicki
8 hours ago
2
$begingroup$
That is a family of well-ordered sets, not a well-ordered family of (arbitrary sets).
$endgroup$
– Mike Battaglia
8 hours ago
$begingroup$
Ahh, I missed that distinction. Thank you!
$endgroup$
– Steven Stadnicki
8 hours ago
$begingroup$
I've never seen this axiom before. Does the family itself need to be a set or can it be a proper class?
$endgroup$
– Robert Shore
8 hours ago
$begingroup$
Google suggests this: settheory.mathtalks.org/andreas-blass-well-ordered-choice
$endgroup$
– Carl Mummert
8 hours ago
|
show 2 more comments
$begingroup$
I sometimes see references to the "Axiom of Well-Ordered Choice," but I'm not sure how strong it is. It states that every well-ordered family of sets has a choice function.
By "well-ordered family," I don't mean that the sets within the family are well-ordered, but that the family must index all the sets within the family by some ordinal.
How strong is this axiom? Can it prove the Hahn-Banach theorem, the ultrafilter lemma, anything about measurable sets, etc? Does it have any implications about what sets can be well-ordered (the reals for instance), or perhaps prove anything about the Hartogs number of sets, etc?
Does anyone have a reference for this?
set-theory axiom-of-choice foundations well-orders
$endgroup$
I sometimes see references to the "Axiom of Well-Ordered Choice," but I'm not sure how strong it is. It states that every well-ordered family of sets has a choice function.
By "well-ordered family," I don't mean that the sets within the family are well-ordered, but that the family must index all the sets within the family by some ordinal.
How strong is this axiom? Can it prove the Hahn-Banach theorem, the ultrafilter lemma, anything about measurable sets, etc? Does it have any implications about what sets can be well-ordered (the reals for instance), or perhaps prove anything about the Hartogs number of sets, etc?
Does anyone have a reference for this?
set-theory axiom-of-choice foundations well-orders
set-theory axiom-of-choice foundations well-orders
edited 7 hours ago
Mike Battaglia
asked 8 hours ago
Mike BattagliaMike Battaglia
1,4371127
1,4371127
$begingroup$
...isn't this axiom a consequence of ZF? One can choose the (well-defined, since it's well-ordered) lexicographically least element of each set in the family...
$endgroup$
– Steven Stadnicki
8 hours ago
2
$begingroup$
That is a family of well-ordered sets, not a well-ordered family of (arbitrary sets).
$endgroup$
– Mike Battaglia
8 hours ago
$begingroup$
Ahh, I missed that distinction. Thank you!
$endgroup$
– Steven Stadnicki
8 hours ago
$begingroup$
I've never seen this axiom before. Does the family itself need to be a set or can it be a proper class?
$endgroup$
– Robert Shore
8 hours ago
$begingroup$
Google suggests this: settheory.mathtalks.org/andreas-blass-well-ordered-choice
$endgroup$
– Carl Mummert
8 hours ago
|
show 2 more comments
$begingroup$
...isn't this axiom a consequence of ZF? One can choose the (well-defined, since it's well-ordered) lexicographically least element of each set in the family...
$endgroup$
– Steven Stadnicki
8 hours ago
2
$begingroup$
That is a family of well-ordered sets, not a well-ordered family of (arbitrary sets).
$endgroup$
– Mike Battaglia
8 hours ago
$begingroup$
Ahh, I missed that distinction. Thank you!
$endgroup$
– Steven Stadnicki
8 hours ago
$begingroup$
I've never seen this axiom before. Does the family itself need to be a set or can it be a proper class?
$endgroup$
– Robert Shore
8 hours ago
$begingroup$
Google suggests this: settheory.mathtalks.org/andreas-blass-well-ordered-choice
$endgroup$
– Carl Mummert
8 hours ago
$begingroup$
...isn't this axiom a consequence of ZF? One can choose the (well-defined, since it's well-ordered) lexicographically least element of each set in the family...
$endgroup$
– Steven Stadnicki
8 hours ago
$begingroup$
...isn't this axiom a consequence of ZF? One can choose the (well-defined, since it's well-ordered) lexicographically least element of each set in the family...
$endgroup$
– Steven Stadnicki
8 hours ago
2
2
$begingroup$
That is a family of well-ordered sets, not a well-ordered family of (arbitrary sets).
$endgroup$
– Mike Battaglia
8 hours ago
$begingroup$
That is a family of well-ordered sets, not a well-ordered family of (arbitrary sets).
$endgroup$
– Mike Battaglia
8 hours ago
$begingroup$
Ahh, I missed that distinction. Thank you!
$endgroup$
– Steven Stadnicki
8 hours ago
$begingroup$
Ahh, I missed that distinction. Thank you!
$endgroup$
– Steven Stadnicki
8 hours ago
$begingroup$
I've never seen this axiom before. Does the family itself need to be a set or can it be a proper class?
$endgroup$
– Robert Shore
8 hours ago
$begingroup$
I've never seen this axiom before. Does the family itself need to be a set or can it be a proper class?
$endgroup$
– Robert Shore
8 hours ago
$begingroup$
Google suggests this: settheory.mathtalks.org/andreas-blass-well-ordered-choice
$endgroup$
– Carl Mummert
8 hours ago
$begingroup$
Google suggests this: settheory.mathtalks.org/andreas-blass-well-ordered-choice
$endgroup$
– Carl Mummert
8 hours ago
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
The axiom of well-ordered choice, or $sf AC_rm WO$, is strictly weaker than the axiom of choice itself. If we start with $L$ and add $omega_1$ Cohen reals, then go to $L(Bbb R)$, one can show that $sf AC_rm WO$ holds, while $Bbb R$ cannot be well-ordered there.
Pincus proved in the 1970s that this is equivalent to the following statement on Hartogs and Lindenbaum numbers:
$sf AC_rm WO$ is equivalent to the statement $forall x.aleph(x)=aleph^*(x)$.
Here, the Lindenbaum number, $aleph^*(x)$, is the least ordinal which $x$ cannot be mapped onto. One obvious fact is that $aleph(x)leqaleph^*(x)$.
In the late 1950s or early 1960s Jensen proved that this assumption also implies $sf DC$. This is also a very clever proof.
The conjunction of these two consequences gives us that $aleph_1leq 2^aleph_0$, as a result of a theorem of Shelah from the 1980s, this implies there is a non-measurable set of reals.
As far as Hahn–Banach, or other things of that sort, I do not believe that much is known on the topic. But to sum up, this axiom does not imply that the reals are well-ordered, but it does imply there is a non-measurable set of reals because there is a set of reals of size $aleph_1$ and $sf DC$ holds. Moreover, it is equivalent to saying that the Hartogs and Lindenbaum numbers are equal for all sets.
$endgroup$
$begingroup$
Do you have a source for a proof of $sf AC_rm WOiff forall x(aleph(x)=aleph^*(x))$?
$endgroup$
– Holo
6 hours ago
1
$begingroup$
@Holo karagila.org/2014/on-the-partition-principle
$endgroup$
– Asaf Karagila♦
5 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140508%2fhow-strong-is-the-axiom-of-well-ordered-choice%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The axiom of well-ordered choice, or $sf AC_rm WO$, is strictly weaker than the axiom of choice itself. If we start with $L$ and add $omega_1$ Cohen reals, then go to $L(Bbb R)$, one can show that $sf AC_rm WO$ holds, while $Bbb R$ cannot be well-ordered there.
Pincus proved in the 1970s that this is equivalent to the following statement on Hartogs and Lindenbaum numbers:
$sf AC_rm WO$ is equivalent to the statement $forall x.aleph(x)=aleph^*(x)$.
Here, the Lindenbaum number, $aleph^*(x)$, is the least ordinal which $x$ cannot be mapped onto. One obvious fact is that $aleph(x)leqaleph^*(x)$.
In the late 1950s or early 1960s Jensen proved that this assumption also implies $sf DC$. This is also a very clever proof.
The conjunction of these two consequences gives us that $aleph_1leq 2^aleph_0$, as a result of a theorem of Shelah from the 1980s, this implies there is a non-measurable set of reals.
As far as Hahn–Banach, or other things of that sort, I do not believe that much is known on the topic. But to sum up, this axiom does not imply that the reals are well-ordered, but it does imply there is a non-measurable set of reals because there is a set of reals of size $aleph_1$ and $sf DC$ holds. Moreover, it is equivalent to saying that the Hartogs and Lindenbaum numbers are equal for all sets.
$endgroup$
$begingroup$
Do you have a source for a proof of $sf AC_rm WOiff forall x(aleph(x)=aleph^*(x))$?
$endgroup$
– Holo
6 hours ago
1
$begingroup$
@Holo karagila.org/2014/on-the-partition-principle
$endgroup$
– Asaf Karagila♦
5 hours ago
add a comment |
$begingroup$
The axiom of well-ordered choice, or $sf AC_rm WO$, is strictly weaker than the axiom of choice itself. If we start with $L$ and add $omega_1$ Cohen reals, then go to $L(Bbb R)$, one can show that $sf AC_rm WO$ holds, while $Bbb R$ cannot be well-ordered there.
Pincus proved in the 1970s that this is equivalent to the following statement on Hartogs and Lindenbaum numbers:
$sf AC_rm WO$ is equivalent to the statement $forall x.aleph(x)=aleph^*(x)$.
Here, the Lindenbaum number, $aleph^*(x)$, is the least ordinal which $x$ cannot be mapped onto. One obvious fact is that $aleph(x)leqaleph^*(x)$.
In the late 1950s or early 1960s Jensen proved that this assumption also implies $sf DC$. This is also a very clever proof.
The conjunction of these two consequences gives us that $aleph_1leq 2^aleph_0$, as a result of a theorem of Shelah from the 1980s, this implies there is a non-measurable set of reals.
As far as Hahn–Banach, or other things of that sort, I do not believe that much is known on the topic. But to sum up, this axiom does not imply that the reals are well-ordered, but it does imply there is a non-measurable set of reals because there is a set of reals of size $aleph_1$ and $sf DC$ holds. Moreover, it is equivalent to saying that the Hartogs and Lindenbaum numbers are equal for all sets.
$endgroup$
$begingroup$
Do you have a source for a proof of $sf AC_rm WOiff forall x(aleph(x)=aleph^*(x))$?
$endgroup$
– Holo
6 hours ago
1
$begingroup$
@Holo karagila.org/2014/on-the-partition-principle
$endgroup$
– Asaf Karagila♦
5 hours ago
add a comment |
$begingroup$
The axiom of well-ordered choice, or $sf AC_rm WO$, is strictly weaker than the axiom of choice itself. If we start with $L$ and add $omega_1$ Cohen reals, then go to $L(Bbb R)$, one can show that $sf AC_rm WO$ holds, while $Bbb R$ cannot be well-ordered there.
Pincus proved in the 1970s that this is equivalent to the following statement on Hartogs and Lindenbaum numbers:
$sf AC_rm WO$ is equivalent to the statement $forall x.aleph(x)=aleph^*(x)$.
Here, the Lindenbaum number, $aleph^*(x)$, is the least ordinal which $x$ cannot be mapped onto. One obvious fact is that $aleph(x)leqaleph^*(x)$.
In the late 1950s or early 1960s Jensen proved that this assumption also implies $sf DC$. This is also a very clever proof.
The conjunction of these two consequences gives us that $aleph_1leq 2^aleph_0$, as a result of a theorem of Shelah from the 1980s, this implies there is a non-measurable set of reals.
As far as Hahn–Banach, or other things of that sort, I do not believe that much is known on the topic. But to sum up, this axiom does not imply that the reals are well-ordered, but it does imply there is a non-measurable set of reals because there is a set of reals of size $aleph_1$ and $sf DC$ holds. Moreover, it is equivalent to saying that the Hartogs and Lindenbaum numbers are equal for all sets.
$endgroup$
The axiom of well-ordered choice, or $sf AC_rm WO$, is strictly weaker than the axiom of choice itself. If we start with $L$ and add $omega_1$ Cohen reals, then go to $L(Bbb R)$, one can show that $sf AC_rm WO$ holds, while $Bbb R$ cannot be well-ordered there.
Pincus proved in the 1970s that this is equivalent to the following statement on Hartogs and Lindenbaum numbers:
$sf AC_rm WO$ is equivalent to the statement $forall x.aleph(x)=aleph^*(x)$.
Here, the Lindenbaum number, $aleph^*(x)$, is the least ordinal which $x$ cannot be mapped onto. One obvious fact is that $aleph(x)leqaleph^*(x)$.
In the late 1950s or early 1960s Jensen proved that this assumption also implies $sf DC$. This is also a very clever proof.
The conjunction of these two consequences gives us that $aleph_1leq 2^aleph_0$, as a result of a theorem of Shelah from the 1980s, this implies there is a non-measurable set of reals.
As far as Hahn–Banach, or other things of that sort, I do not believe that much is known on the topic. But to sum up, this axiom does not imply that the reals are well-ordered, but it does imply there is a non-measurable set of reals because there is a set of reals of size $aleph_1$ and $sf DC$ holds. Moreover, it is equivalent to saying that the Hartogs and Lindenbaum numbers are equal for all sets.
answered 7 hours ago
Asaf Karagila♦Asaf Karagila
306k33437768
306k33437768
$begingroup$
Do you have a source for a proof of $sf AC_rm WOiff forall x(aleph(x)=aleph^*(x))$?
$endgroup$
– Holo
6 hours ago
1
$begingroup$
@Holo karagila.org/2014/on-the-partition-principle
$endgroup$
– Asaf Karagila♦
5 hours ago
add a comment |
$begingroup$
Do you have a source for a proof of $sf AC_rm WOiff forall x(aleph(x)=aleph^*(x))$?
$endgroup$
– Holo
6 hours ago
1
$begingroup$
@Holo karagila.org/2014/on-the-partition-principle
$endgroup$
– Asaf Karagila♦
5 hours ago
$begingroup$
Do you have a source for a proof of $sf AC_rm WOiff forall x(aleph(x)=aleph^*(x))$?
$endgroup$
– Holo
6 hours ago
$begingroup$
Do you have a source for a proof of $sf AC_rm WOiff forall x(aleph(x)=aleph^*(x))$?
$endgroup$
– Holo
6 hours ago
1
1
$begingroup$
@Holo karagila.org/2014/on-the-partition-principle
$endgroup$
– Asaf Karagila♦
5 hours ago
$begingroup$
@Holo karagila.org/2014/on-the-partition-principle
$endgroup$
– Asaf Karagila♦
5 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140508%2fhow-strong-is-the-axiom-of-well-ordered-choice%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
...isn't this axiom a consequence of ZF? One can choose the (well-defined, since it's well-ordered) lexicographically least element of each set in the family...
$endgroup$
– Steven Stadnicki
8 hours ago
2
$begingroup$
That is a family of well-ordered sets, not a well-ordered family of (arbitrary sets).
$endgroup$
– Mike Battaglia
8 hours ago
$begingroup$
Ahh, I missed that distinction. Thank you!
$endgroup$
– Steven Stadnicki
8 hours ago
$begingroup$
I've never seen this axiom before. Does the family itself need to be a set or can it be a proper class?
$endgroup$
– Robert Shore
8 hours ago
$begingroup$
Google suggests this: settheory.mathtalks.org/andreas-blass-well-ordered-choice
$endgroup$
– Carl Mummert
8 hours ago