7-cube Contents Related polytopes As a configuration Cartesian coordinates Images References External links Navigation menu"7D uniform polytopes (polyexa) o3o3o3o3o3o4x - hept""Hypercube""Hypercube graph""Measure polytope"the originalMulti-dimensional Glossary: hypercubeRotation of 7D-Cubee

7-polytopes


geometryseven-dimensionalhypercubeverticesedgesfacescellstesseract4-facespenteract5-faceshexeract6-facesSchläfli symbol6-cubesportmanteautesseractGreek7 dimensional polytopefacetshypercubesdual7-orthoplexcross-polytopesuniform polytopedemihepteractdemihypercubesdemihexeractic6-simplexconfiguration matrixCartesian coordinates




































7-cube
Hepteract

7-cube t0.svg
Orthogonal projection
inside Petrie polygon
The central orange vertex is doubled
TypeRegular 7-polytope
Family
hypercube
Schläfli symbol4,35
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.png


6-faces14 4,346-cube graph.svg
5-faces84 4,335-cube graph.svg
4-faces280 4,3,3 4-cube graph.svg
Cells560 4,3 3-cube graph.svg
Faces672 4 2-cube.svg
Edges448
Vertices128
Vertex figure
6-simplex 6-simplex graph.svg
Petrie polygon
tetradecagon
Coxeter groupC7, [35,4]
Dual
7-orthoplex
Properties
convex

In geometry, a 7-cube is a seven-dimensional hypercube with 128 vertices, 448 edges, 672 square faces, 560 cubic cells, 280 tesseract 4-faces, 84 penteract 5-faces, and 14 hexeract 6-faces.


It can be named by its Schläfli symbol 4,35, being composed of 3 6-cubes around each 5-face. It can be called a hepteract, a portmanteau of tesseract (the 4-cube) and hepta for seven (dimensions) in Greek. It can also be called a regular tetradeca-7-tope or tetradecaexon, being a 7 dimensional polytope constructed from 14 regular facets.




Contents





  • 1 Related polytopes


  • 2 As a configuration


  • 3 Cartesian coordinates


  • 4 Images


  • 5 References


  • 6 External links




Related polytopes


It is a part of an infinite family of polytopes, called hypercubes. The dual of a 7-cube is called a 7-orthoplex, and is a part of the infinite family of cross-polytopes.


Applying an alternation operation, deleting alternating vertices of the hepteract, creates another uniform polytope, called a demihepteract, (part of an infinite family called demihypercubes), which has 14 demihexeractic and 64 6-simplex 6-faces.



As a configuration


This configuration matrix represents the 7-cube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-cube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]


[1287213535217244861520156446725101058126560464163224828033328080401084264192240160601214]displaystyle beginbmatrixbeginmatrix128&7&21&35&35&21&7\2&448&6&15&20&15&6\4&4&672&5&10&10&5\8&12&6&560&4&6&4\16&32&24&8&280&3&3\32&80&80&40&10&84&2\64&192&240&160&60&12&14endmatrixendbmatrix



Cartesian coordinates


Cartesian coordinates for the vertices of a hepteract centered at the origin and edge length 2 are


(±1,±1,±1,±1,±1,±1,±1)

while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6) with -1 < xi < 1.




Images



7-cube column graph.svg
This hypercube graph is an orthogonal projection. This orientation shows columns of vertices positioned a vertex-edge-vertex distance from one vertex on the left to one vertex on the right, and edges attaching adjacent columns of vertices. The number of vertices in each column represents rows in Pascal's triangle, being 1:7:21:35:35:21:7:1.


File:Hepteract.ogvPlay media

Hepteract 7D simple rotation through 2Pi with 7D perspective projection to 3D.





































orthographic projections

Coxeter plane
B7 / A6B6 / D7B5 / D6 / A4
Graph

7-cube t0.svg

7-cube t0 B6.svg

7-cube t0 B5.svg

Dihedral symmetry
[14]
[12]
[10]
Coxeter plane
B4 / D5B3 / D4 / A2B2 / D3
Graph

4-cube t0.svg

7-cube t0 B3.svg

7-cube t0 B2.svg
Dihedral symmetry
[8]
[6]
[4]
Coxeter plane
A5A3
Graph

7-cube t0 A5.svg

7-cube t0 A3.svg
Dihedral symmetry
[6]
[4]


References



  1. ^ Coxeter, Regular Polytopes, sec 1.8 Configurations


  2. ^ Coxeter, Complex Regular Polytopes, p.117



  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, .mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
      ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)

    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)


    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
      ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]

      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]

      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]




  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)


  • Klitzing, Richard. "7D uniform polytopes (polyexa) o3o3o3o3o3o4x - hept".


External links


  • Weisstein, Eric W. "Hypercube". MathWorld.

  • Weisstein, Eric W. "Hypercube graph". MathWorld.


  • Olshevsky, George. "Measure polytope". Glossary for Hyperspace. Archived from the original on 4 February 2007.


  • Multi-dimensional Glossary: hypercube Garrett Jones


  • Rotation of 7D-Cube www.4d-screen.de





































































Fundamental convex regular and uniform polytopes in dimensions 2–10


Family

An

Bn

I2(p) / Dn

E6 / E7 / E8 / F4 / G2

Hn

Regular polygon

Triangle

Square

p-gon

Hexagon

Pentagon

Uniform polyhedron

Tetrahedron

Octahedron • Cube

Demicube


Dodecahedron • Icosahedron

Uniform 4-polytope

5-cell

16-cell • Tesseract

Demitesseract

24-cell

120-cell • 600-cell

Uniform 5-polytope

5-simplex

5-orthoplex • 5-cube

5-demicube



Uniform 6-polytope

6-simplex

6-orthoplex • 6-cube

6-demicube

122 • 221


Uniform 7-polytope

7-simplex

7-orthoplex • 7-cube

7-demicube

132 • 231 • 321


Uniform 8-polytope

8-simplex

8-orthoplex • 8-cube

8-demicube

142 • 241 • 421


Uniform 9-polytope

9-simplex

9-orthoplex • 9-cube

9-demicube



Uniform 10-polytope

10-simplex

10-orthoplex • 10-cube

10-demicube


Uniform n-polytope

n-simplex

n-orthoplex • n-cube

n-demicube

1k2 • 2k1 • k21

n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds

7-polytopesUncategorized

Popular posts from this blog

Creating 100m^2 grid automatically using QGIS?Creating grid constrained within polygon in QGIS?Createing polygon layer from point data using QGIS?Creating vector grid using QGIS?Creating grid polygons from coordinates using R or PythonCreating grid from spatio temporal point data?Creating fields in attributes table using other layers using QGISCreate .shp vector grid in QGISQGIS Creating 4km point grid within polygonsCreate a vector grid over a raster layerVector Grid Creates just one grid

Nikolai Prilezhaev Bibliography References External links Navigation menuEarly Russian Organic Chemists and Their Legacy092774english translationRussian Biography

How to link a C library to an Assembly library on Mac with clangHow do you set, clear, and toggle a single bit?Find (and kill) process locking port 3000 on MacWho is listening on a given TCP port on Mac OS X?How to start PostgreSQL server on Mac OS X?Compile assembler in nasm on mac osHow do I install pip on macOS or OS X?AFNetworking 2.0 “_NSURLSessionTransferSizeUnknown” linking error on Mac OS X 10.8C++ code for testing the Collatz conjecture faster than hand-written assembly - why?How to link a NASM code and GCC in Mac OS X?How to run x86 .asm on macOS Sierra